scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Wavelets and signal processing

Olivier Rioul1, Martin Vetterli
01 Oct 1991-IEEE Signal Processing Magazine (IEEE)-Vol. 8, Iss: 4, pp 14-38
TL;DR: A simple, nonrigorous, synthetic view of wavelet theory is presented for both review and tutorial purposes, which includes nonstationary signal analysis, scale versus frequency,Wavelet analysis and synthesis, scalograms, wavelet frames and orthonormal bases, the discrete-time case, and applications of wavelets in signal processing.
Abstract: A simple, nonrigorous, synthetic view of wavelet theory is presented for both review and tutorial purposes. The discussion includes nonstationary signal analysis, scale versus frequency, wavelet analysis and synthesis, scalograms, wavelet frames and orthonormal bases, the discrete-time case, and applications of wavelets in signal processing. The main definitions and properties of wavelet transforms are covered, and connections among the various fields where results have been developed are shown. >

Content maybe subject to copyright    Report






Citations
More filters
Book
01 Jan 1998
TL;DR: An introduction to a Transient World and an Approximation Tour of Wavelet Packet and Local Cosine Bases.
Abstract: Introduction to a Transient World. Fourier Kingdom. Discrete Revolution. Time Meets Frequency. Frames. Wavelet Zoom. Wavelet Bases. Wavelet Packet and Local Cosine Bases. An Approximation Tour. Estimations are Approximations. Transform Coding. Appendix A: Mathematical Complements. Appendix B: Software Toolboxes.

17,693 citations

Journal ArticleDOI
TL;DR: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions, chosen in order to best match the signal structures.
Abstract: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. Matching pursuits are general procedures to compute adaptive signal representations. With a dictionary of Gabor functions a matching pursuit defines an adaptive time-frequency transform. They derive a signal energy distribution in the time-frequency plane, which does not include interference terms, unlike Wigner and Cohen class distributions. A matching pursuit isolates the signal structures that are coherent with respect to a given dictionary. An application to pattern extraction from noisy signals is described. They compare a matching pursuit decomposition with a signal expansion over an optimized wavepacket orthonormal basis, selected with the algorithm of Coifman and Wickerhauser see (IEEE Trans. Informat. Theory, vol. 38, Mar. 1992). >

9,380 citations

Journal ArticleDOI
J.M. Shapiro1
TL;DR: The embedded zerotree wavelet algorithm (EZW) is a simple, yet remarkably effective, image compression algorithm, having the property that the bits in the bit stream are generated in order of importance, yielding a fully embedded code.
Abstract: The embedded zerotree wavelet algorithm (EZW) is a simple, yet remarkably effective, image compression algorithm, having the property that the bits in the bit stream are generated in order of importance, yielding a fully embedded code The embedded code represents a sequence of binary decisions that distinguish an image from the "null" image Using an embedded coding algorithm, an encoder can terminate the encoding at any point thereby allowing a target rate or target distortion metric to be met exactly Also, given a bit stream, the decoder can cease decoding at any point in the bit stream and still produce exactly the same image that would have been encoded at the bit rate corresponding to the truncated bit stream In addition to producing a fully embedded bit stream, the EZW consistently produces compression results that are competitive with virtually all known compression algorithms on standard test images Yet this performance is achieved with a technique that requires absolutely no training, no pre-stored tables or codebooks, and requires no prior knowledge of the image source The EZW algorithm is based on four key concepts: (1) a discrete wavelet transform or hierarchical subband decomposition, (2) prediction of the absence of significant information across scales by exploiting the self-similarity inherent in images, (3) entropy-coded successive-approximation quantization, and (4) universal lossless data compression which is achieved via adaptive arithmetic coding >

5,559 citations

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a state-of-the-art survey of ANN applications in forecasting and provide a synthesis of published research in this area, insights on ANN modeling issues, and future research directions.

3,680 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, it is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2 /sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions.
Abstract: Multiresolution representations are effective for analyzing the information content of images. The properties of the operator which approximates a signal at a given resolution were studied. It is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2/sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions. In L/sup 2/(R), a wavelet orthonormal basis is a family of functions which is built by dilating and translating a unique function psi (x). This decomposition defines an orthogonal multiresolution representation called a wavelet representation. It is computed with a pyramidal algorithm based on convolutions with quadrature mirror filters. Wavelet representation lies between the spatial and Fourier domains. For images, the wavelet representation differentiates several spatial orientations. The application of this representation to data compression in image coding, texture discrimination and fractal analysis is discussed. >

20,028 citations

Journal ArticleDOI
Ingrid Daubechies1
TL;DR: This work construct orthonormal bases of compactly supported wavelets, with arbitrarily high regularity, by reviewing the concept of multiresolution analysis as well as several algorithms in vision decomposition and reconstruction.
Abstract: We construct orthonormal bases of compactly supported wavelets, with arbitrarily high regularity. The order of regularity increases linearly with the support width. We start by reviewing the concept of multiresolution analysis as well as several algorithms in vision decomposition and reconstruction. The construction then follows from a synthesis of these different approaches.

8,588 citations


"Wavelets and signal processing" refers background in this paper

  • ...Such filters are called regular, and examples can be found in [DAU88, COHSOa , DAUSOb, RI090b, VETSOb]....

    [...]

Journal ArticleDOI
TL;DR: A technique for image encoding in which local operators of many scales but identical shape serve as the basis functions, which tends to enhance salient image features and is well suited for many image analysis tasks as well as for image compression.
Abstract: We describe a technique for image encoding in which local operators of many scales but identical shape serve as the basis functions. The representation differs from established techniques in that the code elements are localized in spatial frequency as well as in space. Pixel-to-pixel correlations are first removed by subtracting a lowpass filtered copy of the image from the image itself. The result is a net data compression since the difference, or error, image has low variance and entropy, and the low-pass filtered image may represented at reduced sample density. Further data compression is achieved by quantizing the difference image. These steps are then repeated to compress the low-pass image. Iteration of the process at appropriately expanded scales generates a pyramid data structure. The encoding process is equivalent to sampling the image with Laplacian operators of many scales. Thus, the code tends to enhance salient image features. A further advantage of the present code is that it is well suited for many image analysis tasks as well as for image compression. Fast algorithms are described for coding and decoding.

6,975 citations

Journal ArticleDOI
TL;DR: Two different procedures for effecting a frequency analysis of a time-dependent signal locally in time are studied and the notion of time-frequency localization is made precise, within this framework, by two localization theorems.
Abstract: Two different procedures for effecting a frequency analysis of a time-dependent signal locally in time are studied. The first procedure is the short-time or windowed Fourier transform; the second is the wavelet transform, in which high-frequency components are studied with sharper time resolution than low-frequency components. The similarities and the differences between these two methods are discussed. For both schemes a detailed study is made of the reconstruction method and its stability as a function of the chosen time-frequency density. Finally, the notion of time-frequency localization is made precise, within this framework, by two localization theorems. >

6,180 citations


"Wavelets and signal processing" refers background or methods in this paper

  • ...It may even happen that A=B (“tight frame”), in which case the wavelets behave exactly like an orthonormal basis, although they may not even be linearly independent [ DAUSOa ]! The reconstruction formula can also be made exact in the general case if one uses different synthesis functions h;.k(t) (which constitute the dualframe of the hjk(t)s [DAUSOal)....

    [...]

  • ...This is in sharp contrast with the STET, where, according to the Balian-Low theorem [ DAUSOa ], it is impossible to have orthonormal bases with functions well localized in time and frequency (that is, for which the time-bandwidth product At Afis a finite number)....

    [...]

  • ...For example, a signal may be reconstructed only with zero mean since h(t) dt = 0. In fact the type of convergence of (8) may be strengthened and is related to the numerical robustness of the reconstruction [ DAUSOa ]....

    [...]

  • ...They may as well be discrete (DAU88, MAL89b, MEY89, DAUSOa ], leading to a Wavelet Series expansion....

    [...]

  • ...Ftg. 8. Reconstruction SignallNoise Ratio (SNR) error afterframe decomposition for dtfferent sampling densities an = 2IfN [N = number of voices per octave), b = ad k bo [aBer [ DAUSOa ])....

    [...]

01 Jan 1946

5,910 citations