scispace - formally typeset
Search or ask a question
Book

Weak Convergence and Empirical Processes: With Applications to Statistics

14 Mar 1996-
TL;DR: In this article, the authors define the Ball Sigma-Field and Measurability of Suprema and show that it is possible to achieve convergence almost surely and in probability.
Abstract: 1.1. Introduction.- 1.2. Outer Integrals and Measurable Majorants.- 1.3. Weak Convergence.- 1.4. Product Spaces.- 1.5. Spaces of Bounded Functions.- 1.6. Spaces of Locally Bounded Functions.- 1.7. The Ball Sigma-Field and Measurability of Suprema.- 1.8. Hilbert Spaces.- 1.9. Convergence: Almost Surely and in Probability.- 1.10. Convergence: Weak, Almost Uniform, and in Probability.- 1.11. Refinements.- 1.12. Uniformity and Metrization.- 2.1. Introduction.- 2.2. Maximal Inequalities and Covering Numbers.- 2.3. Symmetrization and Measurability.- 2.4. Glivenko-Cantelli Theorems.- 2.5. Donsker Theorems.- 2.6. Uniform Entropy Numbers.- 2.7. Bracketing Numbers.- 2.8. Uniformity in the Underlying Distribution.- 2.9. Multiplier Central Limit Theorems.- 2.10. Permanence of the Donsker Property.- 2.11. The Central Limit Theorem for Processes.- 2.12. Partial-Sum Processes.- 2.13. Other Donsker Classes.- 2.14. Tail Bounds.- 3.1. Introduction.- 3.2. M-Estimators.- 3.3. Z-Estimators.- 3.4. Rates of Convergence.- 3.5. Random Sample Size, Poissonization and Kac Processes.- 3.6. The Bootstrap.- 3.7. The Two-Sample Problem.- 3.8. Independence Empirical Processes.- 3.9. The Delta-Method.- 3.10. Contiguity.- 3.11. Convolution and Minimax Theorems.- A. Appendix.- A.1. Inequalities.- A.2. Gaussian Processes.- A.2.1. Inequalities and Gaussian Comparison.- A.2.2. Exponential Bounds.- A.2.3. Majorizing Measures.- A.2.4. Further Results.- A.3. Rademacher Processes.- A.4. Isoperimetric Inequalities for Product Measures.- A.5. Some Limit Theorems.- A.6. More Inequalities.- A.6.1. Binomial Random Variables.- A.6.2. Multinomial Random Vectors.- A.6.3. Rademacher Sums.- Notes.- References.- Author Index.- List of Symbols.
Citations
More filters
Journal ArticleDOI
TL;DR: It is shown that neighborhood selection with the Lasso is a computationally attractive alternative to standard covariance selection for sparse high-dimensional graphs and is hence equivalent to variable selection for Gaussian linear models.
Abstract: The pattern of zero entries in the inverse covariance matrix of a multivariate normal distribution corresponds to conditional independence restrictions between variables. Covariance selection aims at estimating those structural zeros from data. We show that neighborhood selection with the Lasso is a computationally attractive alternative to standard covariance selection for sparse high-dimensional graphs. Neighborhood selection estimates the conditional independence restrictions separately for each node in the graph and is hence equivalent to variable selection for Gaussian linear models. We show that the proposed neighborhood selection scheme is consistent for sparse high-dimensional graphs. Consistency hinges on the choice of the penalty parameter. The oracle value for optimal prediction does not lead to a consistent neighborhood estimate. Controlling instead the probability of falsely joining some distinct connectivity components of the graph, consistent estimation for sparse graphs is achieved (with exponential rates), even when the number of variables grows as the number of observations raised to an arbitrary power.

3,793 citations

Journal ArticleDOI
TL;DR: This work proposes a framework for analyzing and comparing distributions, which is used to construct statistical tests to determine if two samples are drawn from different distributions, and presents two distribution free tests based on large deviation bounds for the maximum mean discrepancy (MMD).
Abstract: We propose a framework for analyzing and comparing distributions, which we use to construct statistical tests to determine if two samples are drawn from different distributions. Our test statistic is the largest difference in expectations over functions in the unit ball of a reproducing kernel Hilbert space (RKHS), and is called the maximum mean discrepancy (MMD).We present two distribution free tests based on large deviation bounds for the MMD, and a third test based on the asymptotic distribution of this statistic. The MMD can be computed in quadratic time, although efficient linear time approximations are available. Our statistic is an instance of an integral probability metric, and various classical metrics on distributions are obtained when alternative function classes are used in place of an RKHS. We apply our two-sample tests to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where they perform strongly. Excellent performance is also obtained when comparing distributions over graphs, for which these are the first such tests.

3,792 citations

Book
24 Sep 2009
TL;DR: The authors dedicate this book to Julia, Benjamin, Daniel, Natan and Yael; to Tsonka, Konstatin and Marek; and to the Memory of Feliks, Maria, and Dentcho.
Abstract: List of notations Preface to the second edition Preface to the first edition 1. Stochastic programming models 2. Two-stage problems 3. Multistage problems 4. Optimization models with probabilistic constraints 5. Statistical inference 6. Risk averse optimization 7. Background material 8. Bibliographical remarks Bibliography Index.

2,443 citations

Book
01 Jan 2001
TL;DR: Concentration functions and inequalities isoperimetric and functional examples Concentration and geometry Concentration in product spaces Entropy and concentration Transportation cost inequalities Sharp bounds of Gaussian and empirical processes Selected applications References Index
Abstract: Concentration functions and inequalities Isoperimetric and functional examples Concentration and geometry Concentration in product spaces Entropy and concentration Transportation cost inequalities Sharp bounds of Gaussian and empirical processes Selected applications References Index

2,324 citations

Journal ArticleDOI
TL;DR: This work proposes summarizing the discrimination potential of a marker X, measured at baseline (t = 0), by calculating ROC curves for cumulative disease or death incidence by time t, which is presented as ROC(t), and presents an example where ROC (t) is used to compare a standard and a modified flow cytometry measurement for predicting survival after detection of breast cancer.
Abstract: ROC curves are a popular method for displaying sensitivity and specificity of a continuous diagnostic marker, X, for a binary disease variable, D. However, many disease outcomes are time dependent, D(t), and ROC curves that vary as a function of time may be more appropriate. A common example of a time-dependent variable is vital status, where D(t) = 1 if a patient has died prior to time t and zero otherwise. We propose summarizing the discrimination potential of a marker X, measured at baseline (t = 0), by calculating ROC curves for cumulative disease or death incidence by time t, which we denote as ROC(t). A typical complexity with survival data is that observations may be censored. Two ROC curve estimators are proposed that can accommodate censored data. A simple estimator is based on using the Kaplan-Meier estimator for each possible subset X > c. However, this estimator does not guarantee the necessary condition that sensitivity and specificity are monotone in X. An alternative estimator that does guarantee monotonicity is based on a nearest neighbor estimator for the bivariate distribution function of (X, T), where T represents survival time (Akritas, M. J., 1994, Annals of Statistics 22, 1299-1327). We present an example where ROC(t) is used to compare a standard and a modified flow cytometry measurement for predicting survival after detection of breast cancer and an example where the ROC(t) curve displays the impact of modifying eligibility criteria for sample size and power in HIV prevention trials.

2,177 citations