scispace - formally typeset
Open AccessJournal ArticleDOI

Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions.

Reads0
Chats0
TLDR
The motivation for studying Pd-catalyzed C-H functionalization assisted by weakly coordinating functional groups is discussed, and efforts to bring reactions of this type to fruition are chronicle.
Abstract
Reactions that convert carbon–hydrogen (C–H) bonds into carbon–carbon (C–C) or carbon–heteroatom (C–Y) bonds are attractive tools for organic chemists, potentially expediting the synthesis of target molecules through new disconnections in retrosynthetic analysis. Despite extensive inorganic and organometallic study of the insertion of homogeneous metal species into unactivated C–H bonds, practical applications of this technology in organic chemistry are still rare. Only in the past decade have metal-catalyzed C–H functionalization reactions become more widely utilized in organic synthesis.Research in the area of homogeneous transition metal–catalyzed C–H functionalization can be broadly grouped into two subfields. They reflect different approaches and goals and thus have different challenges and opportunities. One approach involves reactions of completely unfunctionalized aromatic and aliphatic hydrocarbons, which we refer to as “first functionalization”. Here the substrates are nonpolar and hydrophobic a...

read more

Citations
More filters
Journal ArticleDOI

Catalytic Functionalization of C(sp2) ? H and C(sp3) ? H Bonds by Using Bidentate Directing Groups

TL;DR: It would, therefore, appear that direct functionalization of substrates by activation of C-H bonds would eliminate the multiple steps and limitations associated with the preparation of functionalized starting materials.
Journal ArticleDOI

The Cross-Dehydrogenative Coupling of C sp 3H Bonds: A Versatile Strategy for CC Bond Formations

TL;DR: This Review highlights the recent progress in the field of cross-dehydrogenative C sp 3C formations and provides a comprehensive overview on existing procedures and employed methodologies.
Journal ArticleDOI

Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C-H/Het-H bond functionalizations.

TL;DR: Recent efforts have resulted in widely applicable methods for the versatile preparation of differently decorated arenes and heteroarenes, providing access to among others isoquinolones, 2-pyridones,isoquinolines, indoles, pyrroles, or α-pyrones.
Journal ArticleDOI

Mild metal-catalyzed C–H activation: examples and concepts

TL;DR: This review presents the current state of the art in this field and detail C-H activation transformations reported since 2011 that proceed either at or below ambient temperature, in the absence of strongly acidic or basic additives or without strong oxidants.
Journal ArticleDOI

Transition metal-catalyzed C–H bond functionalizations by the use of diverse directing groups

TL;DR: In this article, a review of the development of utilizing functionalities as directing groups for the construction of C-C and C-hetero bonds via C-H activation using various transition metal catalysts is presented.
References
More filters
Journal ArticleDOI

Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: versatility and practicality.

TL;DR: A review of palladium-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle can be found in this paper.
PatentDOI

First practical method for asymmetric epoxidation

TL;DR: In this article, a metal alkoxide is used as a catalyst, where the metal has a coordination number of at least four, and at least one, usually two, of the alkoxide groups bonded to the metal are bonded to asymmetric carbon atoms.
Journal ArticleDOI

Understanding and exploiting C–H bond activation

TL;DR: The recent development of promising catalytic systems highlights the potential of organometallic chemistry for useful C-H bond activation strategies that will ultimately allow us to exploit Earth's alkane resources more efficiently and cleanly as discussed by the authors.
Journal ArticleDOI

Asymmetric Catalysis: Science and Opportunities (Nobel Lecture)

TL;DR: Asymmetric catalysis, in its infancy in the 1960s, has dramatically changed the procedures of chemical synthesis, and resulted in an impressive progression to a level that technically approximates or sometimes even exceeds that of natural biological processes as discussed by the authors.
Related Papers (5)