scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs

01 Oct 2011-Nature Structural & Molecular Biology (NIH Public Access)-Vol. 18, Iss: 10, pp 1139-1146
TL;DR: In this article, the authors used the TargetScan tool for quantitatively predicting miRNA regulation (and siRNA off-targeting) to model differential miRNA proficiencies, thereby improving prediction performance.
Abstract: Most metazoan microRNAs (miRNAs) target many genes for repression, but the nematode lsy-6 miRNA is much less proficient. Here we show that the low proficiency of lsy-6 can be recapitulated in HeLa cells and that miR-23, a mammalian miRNA, also has low proficiency in these cells. Reporter results and array data indicate two properties of these miRNAs that impart low proficiency: their weak predicted seed-pairing stability (SPS) and their high target-site abundance (TA). These two properties also explain differential propensities of small interfering RNAs (siRNAs) to repress unintended targets. Using these insights, we expand the TargetScan tool for quantitatively predicting miRNA regulation (and siRNA off-targeting) to model differential miRNA (and siRNA) proficiencies, thereby improving prediction performance. We propose that siRNAs designed to have both weaker SPS and higher TA will have fewer off-targets without compromised on-target activity.
Citations
More filters
Journal ArticleDOI
12 Aug 2015-eLife
TL;DR: It is shown that recently reported non-canonical sites do not mediate repression despite binding the miRNA, which indicates that the vast majority of functional sites are canonical.
Abstract: Proteins are built by using the information contained in molecules of messenger RNA (mRNA). Cells have several ways of controlling the amounts of different proteins they make. For example, a so-called ‘microRNA’ molecule can bind to an mRNA molecule to cause it to be more rapidly degraded and less efficiently used, thereby reducing the amount of protein built from that mRNA. Indeed, microRNAs are thought to help control the amount of protein made from most human genes, and biologists are working to predict the amount of control imparted by each microRNA on each of its mRNA targets. All RNA molecules are made up of a sequence of bases, each commonly known by a single letter—‘A’, ‘U’, ‘C’ or ‘G’. These bases can each pair up with one specific other base—‘A’ pairs with ‘U’, and ‘C’ pairs with ‘G’. To direct the repression of an mRNA molecule, a region of the microRNA known as a ‘seed’ binds to a complementary sequence in the target mRNA. ‘Canonical sites’ are regions in the mRNA that contain the exact sequence of partner bases for the bases in the microRNA seed. Some canonical sites are more effective at mRNA control than others. ‘Non-canonical sites’ also exist in which the pairing between the microRNA seed and mRNA does not completely match. Previous work has suggested that many non-canonical sites can also control mRNA degradation and usage. Agarwal et al. first used large experimental datasets from many sources to investigate microRNA activity in more detail. As expected, when mRNAs had canonical sites that matched the microRNA, mRNA levels and usage tended to drop. However, no effect was observed when the mRNAs only had recently identified non-canonical sites. This suggests that microRNAs primarily bind to canonical sites to control protein production. Based on these results, Agarwal et al. further developed a statistical model that predicts the effects of microRNAs binding to canonical sites. The updated model considers 14 different features of the microRNA, microRNA site, or mRNA—including the mRNA sequence around the site—to predict which sites within mRNAs are most effectively targeted by microRNAs. Tests showed that Agarwal et al.'s model was as good as experimental approaches at identifying the effective target sites, and was better than existing computational models. The model has been used to power the latest version of a freely available resource called TargetScan, and so could prove a valuable resource for researchers investigating the many important roles of microRNAs in controlling protein production.

5,365 citations

Journal ArticleDOI
TL;DR: The evidence for and against the ceRNA hypothesis are critically evaluated to assess the impact of endogenous miRNA-sponge interactions and to propose an alternative function for messenger RNAs.
Abstract: The competitive endogenous RNA (ceRNA) hypothesis proposes that transcripts with shared microRNA (miRNA) binding sites compete for post-transcriptional control. This hypothesis has gained substantial attention as a unifying function for long non-coding RNAs, pseudogene transcripts and circular RNAs, as well as an alternative function for messenger RNAs. Empirical evidence supporting the hypothesis is accumulating but not without attracting scepticism. Recent studies that model transcriptome-wide binding-site abundance suggest that physiological changes in expression of most individual transcripts will not compromise miRNA activity. In this Review, we critically evaluate the evidence for and against the ceRNA hypothesis to assess the impact of endogenous miRNA-sponge interactions.

1,463 citations

Journal ArticleDOI
TL;DR: DIANA-miRPath v3.0 is an online software suite dedicated to the assessment of miRNA regulatory roles and the identification of controlled pathways and its redesigned Reverse Search module enables users to identify and visualize miRNAs significantly controlling selected pathways or belonging to specific GO categories.
Abstract: The functional characterization of miRNAs is still an open challenge. Here, we present DIANA-miRPath v3.0 (http://www.microrna.gr/miRPathv3) an online software suite dedicated to the assessment of miRNA regulatory roles and the identification of controlled pathways. The new miRPath web server renders possible the functional annotation of one or more miRNAs using standard (hypergeometric distributions), unbiased empirical distributions and/or meta-analysis statistics. DIANA-miRPath v3.0 database and functionality have been significantly extended to support all analyses for KEGG molecular pathways, as well as multiple slices of Gene Ontology (GO) in seven species (Homo sapiens, Mus musculus, Rattus norvegicus, Drosophila melanogaster, Caenorhabditis elegans, Gallus gallus and Danio rerio). Importantly, more than 600 000 experimentally supported miRNA targets from DIANA-TarBase v7.0 have been incorporated into the new schema. Users of DIANA-miRPath v3.0 can harness this wealth of information and substitute or combine the available in silico predicted targets from DIANA-microT-CDS and/or TargetScan v6.2 with high quality experimentally supported interactions. A unique feature of DIANA-miRPath v3.0 is its redesigned Reverse Search module, which enables users to identify and visualize miRNAs significantly controlling selected pathways or belonging to specific GO categories based on in silico or experimental data. DIANA-miRPath v3.0 is freely available to all users without any login requirement.

1,319 citations

Journal ArticleDOI
27 Apr 2012-Cell
TL;DR: Examples and principles of miRNAs that contribute to robustness to biological processes by reinforcing transcriptional programs and attenuating aberrant transcripts are discussed.

1,301 citations

Journal ArticleDOI
25 Apr 2013-Cell
TL;DR: A technique for ligation and sequencing of miRNA-target RNA duplexes associated with human AGO1 was developed, showing that miRNA species systematically differ in their target RNA interactions, and strongly overrepresented motifs were found in the interaction sites of several miRNAs.

1,146 citations

References
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

Journal ArticleDOI
23 Jan 2009-Cell
TL;DR: The current understanding of miRNA target recognition in animals is outlined and the widespread impact of miRNAs on both the expression and evolution of protein-coding genes is discussed.

18,036 citations

Journal ArticleDOI
14 Jan 2005-Cell
TL;DR: In a four-genome analysis of 3' UTRs, approximately 13,000 regulatory relationships were detected above the estimate of false-positive predictions, thereby implicating as miRNA targets more than 5300 human genes, which represented 30% of the gene set.

11,624 citations

Journal ArticleDOI
15 Sep 2004-Nature
TL;DR: Evidence is mounting that animal miRNAs are more numerous, and their regulatory impact more pervasive, than was previously suspected.
Abstract: MicroRNAs (miRNAs) are small RNAs that regulate the expression of complementary messenger RNAs. Hundreds of miRNA genes have been found in diverse animals, and many of these are phylogenetically conserved. With miRNA roles identified in developmental timing, cell death, cell proliferation, haematopoiesis and patterning of the nervous system, evidence is mounting that animal miRNAs are more numerous, and their regulatory impact more pervasive, than was previously suspected.

9,986 citations