scispace - formally typeset
Search or ask a question
Journal ArticleDOI

WEB (water extract of banana): An efficient natural base for one-pot multi-component synthesis of 2-amino-3,5-dicarbonitrile-6-thio-pyridines

04 Mar 2021-Phosphorus Sulfur and Silicon and The Related Elements (Informa UK Limited)-Vol. 196, Iss: 3, pp 328-336
TL;DR: One-pot multi-component synthesis of 2-amino-3,5-dicarbonitrile-6-thio-pyridines derivatives using WEB (water extract of banana peels ash) as a green catalyst is described in this paper.
Abstract: One-pot multi-component synthesis of 2-amino-3,5-dicarbonitrile-6-thio-pyridines derivatives using WEB (water extract of banana peels ash) as a green catalyst is described. A variety of aromatic al...
Citations
More filters
DOI
01 Jan 2016
TL;DR: In this article, a continuous flow synthesis (CFS) method is proposed for the efficient, effective and reproducible synthesis of inorganic compounds, and the effect of synthesis route on particle size, size distribution, and crystallinity is compared.
Abstract: Advanced materials are essential to the quality of modern day life, but the synthesis of these compounds is often inefficient in terms of energy, time and resources; especially when considering the hydrothermal batch methods used to prepare many such compounds – often requiring week-long reaction times with variable yields and product quality. In contrast, Continuous flow synthesis (CFS) provides a more readily scalable means for the efficient, effective and reproducible synthesis of inorganic compounds. This publication demonstrates the novel CFS of several metal ammonium phosphates and compare the effect of synthesis route on particle size, size distribution, and crystallinity.

271 citations

Journal ArticleDOI
TL;DR: A review of recycling of ashes from biomass into reagents for chemical synthesis and biodiesel production is given in this paper, where it is shown that the recycling of waste from fossil-and ore-based materials into new materials is called for more recycling.
Abstract: The decline of fossil- and ore-based materials is calling for more recycling of waste into new materials Here, I review the recycling of ashes from biomass into reagents for chemical synthesis and biodiesel production Biomass includes banana, pomegranate, rice, papaya, century plant, water hyacinth, bael fruit, nilgiri, mango, onion, muskmelon fruit, pomelo, lemon fruit, teak and tamarind Chemical reactions include Knoevenagel condensation, Suzuki–Miyaura cross-coupling, Sonogashira reaction, Dakin reaction, Henry reaction, Ullmann coupling, Pd-catalyzed homocoupling, aromatic bromination, hydroxylation of arylboronic acids, hydration of nitriles and azide–alkyne click reaction The synthesis of peptide bonds, disulfides, aminochromenes, carboxycoumarins, diazohydroxy esters, imidazopyridines, pyranopyrazoles, chalcones, flavones and bisenols is described

45 citations

Journal ArticleDOI
TL;DR: A preliminary study of 2-amino-4-aryl-3,5-dicarbonitrile-6-thiopyridines as new potential antimicrobial drugs was performed.
Abstract: A preliminary study of 2-amino-4-aryl-3,5-dicarbonitrile-6-thiopyridines as new potential antimicrobial drugs was performed. Special emphasis was placed on the selection of the structure of target pyridine derivatives with the highest biological activity against different types of Gram-stained bacteria by lipopolysaccharide (LPS). Herein, Escherichia coli model strains K12 (without LPS in its structure) and R2-R4 (with different lengths of LPS in its structure) were used. Studied target compounds were provided with yields ranging from 53% to 91% by the lipase-catalyzed one pot multicomponent reaction of various aromatic aldehydes with malononitrile, and thiols. The presented work showed that the antibacterial activity of the studied pyridines depends on their structure and affects the LPS of bacteria. Moreover, the influence of the pyridines on bacteria possessing smooth and rough LPS and oxidative damage to plasmid DNA caused by investigated compounds was indicated. Additionally, the modification of the bacterial DNA with the tested compounds was performed to detect new potential oxidative damages, which are recognized by the Fpg protein. The obtained damage modification values of the analyzed compounds were compared with the modifications after antibiotics were used in this type of research. The presented studies demonstrate that 2-amino-4-aryl-3,5-dicarbonitrile-6-thiopyridines can be used as substitutes for known antibiotics. The observed results are especially important in the case of the increasing resistance of bacteria to various drugs and antibiotics.

12 citations

Journal ArticleDOI
TL;DR: In this article, the authors highlight the utility of aqueous extracts of agricultural waste in some significant organic transformations, which exclude the need of harmful volatile organic compounds (VOCs) in a number of organic transformations.

5 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the present-day trends in the catalytic synthesis of 2-amino-3,5-dicarbonitrile-6-sulfanylpyridines are considered using pseudo-four-component reaction (pseudo-4CR) by condensation of malononitrile molecules with thiols and aldehydes, and alternative three-component (3CR) condensations of maloniitrile with S-nucleophiles.
Abstract: This review integrates the published data of the last decade (from 2010 to 2020) on the synthesis of the 2-amino-3,5-dicarbonitrile-6-sulfanylpyridine scaffold, the derivatives of which are widely used in the synthesis of biologically active compounds. Currently, no systematic accounts of synthetic routes towards this class of heterocyclic compounds can be found in the literature. The present-day trends in the catalytic synthesis of 2-amino-3,5-dicarbonitrile-6-sulfanylpyridines are considered using pseudo-four-component reaction (pseudo-4CR) by condensation of malononitrile molecules with thiols and aldehydes, and alternative three-component (3CR) condensations of malononitrile with 2-arylidenemalononitrile and S-nucleophiles.

4 citations

References
More filters
Journal ArticleDOI
TL;DR: Asymmetric multicomponent reactions involve the preparation of chiral compounds by the reaction of three or more reagents added simultaneously and has some advantages over classic divergent reaction strategies, such as lower costs, time, and energy, as well as environmentally friendlier aspects.
Abstract: Asymmetric multicomponent reactions involve the preparation of chiral compounds by the reaction of three or more reagents added simultaneously. This kind of addition and reaction has some advantages over classic divergent reaction strategies, such as lower costs, time, and energy, as well as environmentally friendlier aspects. All these advantages, together with the high level of stereoselectivity attained in some of these reactions, will force chemists in industry as in academia to adopt this new strategy of synthesis, or at least to consider it as a viable option. The positive aspects as well as the drawbacks of this strategy are discussed in this Review.

1,479 citations

Journal ArticleDOI
TL;DR: A review of the state of the art in the use of alternative reaction media for green, sustainable organic synthesis is presented in this article, where a novel and effective method for the immobilisation of enzymes as cross-linked enzyme aggregates (CLEAs) is discussed and a combi CLEA, containing two enzymes, for the one-pot conversion of benzaldehyde to S-mandelic acid is reported.

1,392 citations

Journal ArticleDOI
TL;DR: In this article, various strategies for the valorisation of waste biomass to platform chemicals, and the underlying developments in chemical and biological catalysis which make this possible, are critically reviewed, and three possible routes for producing a bio-based equivalent of the large volume polymer, polyethylene terephthalate (PET) are delineated.

1,246 citations

Journal ArticleDOI
TL;DR: This review details developments of new, highly atom-economic MCR derived chemical methods, which enable the fast and efficient production of chemical libraries comprised of a variety of biologically relevant templates, and focuses on applications of isocyanide based MCR (IMCR) reactions.
Abstract: With the recent emergence of combinatorial chemistry and high-speed parallel synthesis for drug discovery applications, the multi-component reaction (MCR) has seen a resurgence of interest. Easily automated one-pot reactions, such as the Ugi and Passerini reactions, are powerful tools for producing diverse arrays of compounds, often in one step and high yield. Despite this synthetic potential, the Ugi reaction is limited by producing products that are flexible and peptide-like, often being classified as 'non drug-like'. This review details developments of new, highly atom-economic MCR derived chemical methods, which enable the fast and efficient production of chemical libraries comprised of a variety of biologically relevant templates. Representative examples will also be given demonstrating the successful impact of MCR combinatorial methods at different stages of the lead discovery, lead optimization and pre-clinical process development arenas. This will include applications spanning biological tools, natural products and natural product-like diversity, traditional small molecule and 'biotech' therapeutics respectively. In particular, this review will focus on applications of isocyanide based MCR (IMCR) reactions.

927 citations

Journal ArticleDOI
TL;DR: A review of solution-phase multi-component procedures for the synthesis of heterocyclic compounds can be found in this paper, where the authors give an overview of the progress made in the past decade.
Abstract: Following the increased interest from the pharmaceutical industry for the generation of diverse libraries of heterocyclic compounds, scientific efforts have become more and more focused on the development of novel multi-component procedures as a means of gaining rapid access to such compounds. Initially, the development of solid-phase procedures received considerable attention. However, current efforts are increasingly concerned with the development of solution-phase procedures. The latter will be the subject of discussion in this review, which aims to give an overview of the progress made in the past decade. After a general introduction, non-catalyzed, acid-catalyzed, and transition metal-catalyzed solution-phase multi-component procedures for the preparation of a wide range of heterocycles will be discussed. The last chapter discusses the role of cycloaddition reactions in the development of novel MCRs for the synthesis of heterocyclic compounds. In spite of their important role in the synthesis of heterocyclic compounds, MCRs involving isocyanides are not discussed in this review, since the topic has been exhaustively reviewed several times. 1 Introduction 2 Non-Catalyzed MCRs 3 Acid-Catalyzed MCRs 4 Transition Metal-Catalyzed or -Mediated MCRs 5 MCRs Involving Cycloaddition Reactions 6 Conclusions and Outlook.

854 citations