scispace - formally typeset

Welding Metallurgy of

01 Jan 1987-

AboutThe article was published on 1987-01-01 and is currently open access. It has received 792 citation(s) till now. The article focuses on the topic(s): Welding.

...read more


Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the state of the art in selective laser sintering/melting (SLS/SLM) processing of aluminium powders is reviewed from different perspectives, including powder metallurgy (P/M), pulsed electric current (PECS), and laser welding of aluminium alloys.
Abstract: Manufacturing businesses aiming to deliver their new customised products more quickly and gain more consumer markets for their products will increasingly employ selective laser sintering/melting (SLS/SLM) for fabricating high quality, low cost, repeatable, and reliable aluminium alloy powdered parts for automotive, aerospace, and aircraft applications. However, aluminium powder is known to be uniquely bedevilled with the tenacious surface oxide film which is difficult to avoid during SLS/SLM processing. The tenacity of the surface oxide film inhibits metallurgical bonding across the layers during SLS/SLM processing and this consequently leads to initiation of spheroidisation by Marangoni convection. Due to the paucity of publications on SLS/SLM processing of aluminium alloy powders, we review the current state of research and progress from different perspectives of the SLS/SLM, powder metallurgy (P/M) sintering, and pulsed electric current sintering (PECS) of ferrous, non-ferrous alloys, and composite powders as well as laser welding of aluminium alloys in order to provide a basis for follow-on-research that leads to the development of high productivity, SLS/SLM processing of aluminium alloy powders. Moreover, both P/M sintering and PECS of aluminium alloys are evaluated and related to the SLS process with a view to gaining useful insights especially in the aspects of liquid phase sintering (LPS) of aluminium alloys; application of LPS to SLS process; alloying effect in disrupting the surface oxide film of aluminium alloys; and designing of aluminium alloy suitable for the SLS/SLM process. Thereafter, SLS/SLM parameters, powder properties, and different types of lasers with their effects on the processing and densification of aluminium alloys are considered. The microstructure and metallurgical defects associated with SLS/SLM processed parts are also elucidated by highlighting the mechanism of their formation, the main influencing factors, and the remedial measures. Mechanical properties such as hardness, tensile, and fatigue strength of SLS/SLM processed parts are reported. The final part of this paper summarises findings from this review and outlines the trend for future research in the SLS/SLM processing of aluminium alloy powders.

850 citations


Cites background from "Welding Metallurgy of"

  • ...(......................................................3/)(16 33* VSL GSG ∆=∆ θπγ According to Kou [144] and Savage [145], growth of the solid in fusion welding is perceived as being initiated by epitaxial growth from the substrate and proceeds by competitive growth toward the center line of the weld....

    [...]

  • ...100 the predominant mechanism of solidification in fusion welding is the competitive growth in the weld fusion zone, Kou [144] identified and discussed the details of other mechanisms such as dendrite fragmentation, grain detachment, heterogeneous nucleation and surface nucl eatio that may tend can interrupt and/or dominate the solidification structure in fusion welding....

    [...]

  • ...According to Kou [144] and Savage [145], growth of the solid in fusion welding is...

    [...]

  • ...Whereas, the predominant mechanism of solidification in fusion welding is the competitive growth in the weld fusion zone, Kou [144] identified and discussed the details of other mechanisms such as dendrite fragmentation, grain detachment, heterogeneous nucleation and surface nucleatio that may tend can interrupt and/or dominate the solidification structure in fusion welding....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors show that the pre-existing dislocation network, which maintains its configuration during the entire plastic deformation, is an ideal modulator that is able to slow down but not entirely block the dislocation motion.
Abstract: Most mechanisms used for strengthening crystalline materials, e.g. introducing crystalline interfaces, lead to the reduction of ductility. An additive manufacturing process – selective laser melting breaks this trade-off by introducing dislocation network, which produces a stainless steel with both significantly enhanced strength and ductility. Systematic electron microscopy characterization reveals that the pre-existing dislocation network, which maintains its configuration during the entire plastic deformation, is an ideal “modulator” that is able to slow down but not entirely block the dislocation motion. It also promotes the formation of a high density of nano-twins during plastic deformation. This finding paves the way for developing high performance metals by tailoring the microstructure through additive manufacturing processes.

303 citations

Journal ArticleDOI
TL;DR: In this article, the fundamental understanding of structure-properties relationship in automotive steels resistance spot welds is discussed. And a brief review of friction stir spot welding, as an alternative to RSW, is also included.
Abstract: Spot welding, particularly resistance spot welding (RSW), is a critical joining process in automotive industry. The development of advanced high strength steels for applications in automotive industry is accompanied with a challenge to better understand the physical and mechanical metallurgy of these materials during RSW. The present paper critically reviews the fundamental understanding of structure–properties relationship in automotive steels resistance spot welds. The focus is on the metallurgical characteristics, hardness–microstructure correlation, interfacial to pullout failure mode transition and mechanical performance of steel resistance spot welds under quasi-static, fatigue and impact loading conditions. A brief review of friction stir spot welding, as an alternative to RSW, is also included.

295 citations


Cites background from "Welding Metallurgy of"

  • ...Despite the fact that Schaeffler diagram predicts two phases (austenite plus ferrite) in the FZ of AISI 304 weld nugget microstructure, under rapid solidification conditions such as laser beam welding, a shift in solidification mode may occur.(90) It is generally believed that the change in solidification mode can often result in a fully austenitic microstructure compared to the two phase (ferrite plus austenite) microstructure that is commonly found after primary ferrite solidification....

    [...]

  • ...In coarse grained region, which is beside the FZ, both high cooling rate and large austenite grain size coupled with the formation of the carbon rich austenite promote the formation of the martensite.(90) Figure 15 shows the microstructure gradient in TRIP780 RSW....

    [...]

  • ...The HAZ in carbon steel weldments can be divided into three distinct subregions: (i) upper critical HAZ (UCHAZ): This region experiences peak temperatures above Ac3 transforming BM microstructure into austenite.(90) Depending on the peak temperature the supercritical HAZ can be divided to the following zones: coarse grained HAZ (CGHAZ) and fine grained HAZ....

    [...]

  • ...It is generally believed that the change in solidification mode can often result in a fully austenitic microstructure compared to the two phase (ferrite plus austenite) microstructure that is commonly found after primary ferrite solidification.(90,95,96) Although the change in solidification mode of stainless steel in RSW has not been studied yet, very high cooling rate in RSW process can explain the formation of a fully austenitic weld nugget, as it is the case for laser beam welding....

    [...]

  • ...If this temperature is above Mf, there can be untransformed austenite left in the FZ and it can redecompose to untempered martensite upon cooling to room temperature after tempering.(90) For a particular tempering time and tempering current, there is a minimum cooling time to achieve PF mode....

    [...]

Journal Article
TL;DR: In this paper, a study was conducted on the arc and melting efficiency of the plasma arc, gas tungsten, gas metal arc, and submerged arc welding processes using A36 steel base metal, and the results were extended to develop a quantitative method for estimating weld metal dilution.
Abstract: A study was conducted on the arc and melting efficiency of the plasma arc, gas tungsten arc, gas metal arc, and submerged arc welding processes The results of this work are extended to develop a quantitative method for estimating weld metal dilution in a companion paper Arc efficiency was determined as a function of current for each process using A36 steel base metal Melting efficiency was evaluated with variations in arc power and travel speed during deposition of austenitic stainless steel filler metal onto A36 steel substrates The arc efficiency did not vary significantly within a given process over the range of currents investigated The consumable electrode processes exhibited the highest arc efficiency (084), followed by the gas tungsten arc (067) and plasma arc (047) processes Resistive heating of the consumable GMAW electrode was calculated to account for a significant difference in arc efficiency between the gas metal arc and gas tungsten arc processes A semi-empirical relation was developed for the melting efficiency as a function of net arc power and travel speed, which described the experimental data well An interaction was observed between the arc and melting efficiency A low arc efficiency factor limits the power delivered to the substrate which, in turn, limits the maximum travel speed for a given set of conditions High melting efficiency is favored by high arc powers and travel speeds As a result, a low arc efficiency can limit the maximum obtainable melting efficiency

209 citations

Journal ArticleDOI
TL;DR: In this article, a unified equation to compute the energy density is proposed to compare works performed with distinct equipment and experimental conditions, covering the major process parameters: power, travel speed, heat source dimension, hatch distance, deposited layer thickness and material grain size.
Abstract: Additive manufacturing technologies based on melting and solidification have considerable similarities with fusion-based welding technologies, either by electric arc or high-power beams. However, several concepts are being introduced in additive manufacturing which have been extensively used in multipass arc welding with filler material. Therefore, clarification of fundamental definitions is important to establish a common background between welding and additive manufacturing research communities. This paper aims to review these concepts, highlighting the distinctive characteristics of fusion welding that can be embraced by additive manufacturing, namely the nature of rapid thermal cycles associated to small size and localized heat sources, the non-equilibrium nature of rapid solidification and its effects on: internal defects formation, phase transformations, residual stresses and distortions. Concerning process optimization, distinct criteria are proposed based on geometric, energetic and thermal considerations, allowing to determine an upper bound limit for the optimum hatch distance during additive manufacturing. Finally, a unified equation to compute the energy density is proposed. This equation enables to compare works performed with distinct equipment and experimental conditions, covering the major process parameters: power, travel speed, heat source dimension, hatch distance, deposited layer thickness and material grain size.

208 citations


References
More filters
Journal ArticleDOI
TL;DR: In this article, the state of the art in selective laser sintering/melting (SLS/SLM) processing of aluminium powders is reviewed from different perspectives, including powder metallurgy (P/M), pulsed electric current (PECS), and laser welding of aluminium alloys.
Abstract: Manufacturing businesses aiming to deliver their new customised products more quickly and gain more consumer markets for their products will increasingly employ selective laser sintering/melting (SLS/SLM) for fabricating high quality, low cost, repeatable, and reliable aluminium alloy powdered parts for automotive, aerospace, and aircraft applications. However, aluminium powder is known to be uniquely bedevilled with the tenacious surface oxide film which is difficult to avoid during SLS/SLM processing. The tenacity of the surface oxide film inhibits metallurgical bonding across the layers during SLS/SLM processing and this consequently leads to initiation of spheroidisation by Marangoni convection. Due to the paucity of publications on SLS/SLM processing of aluminium alloy powders, we review the current state of research and progress from different perspectives of the SLS/SLM, powder metallurgy (P/M) sintering, and pulsed electric current sintering (PECS) of ferrous, non-ferrous alloys, and composite powders as well as laser welding of aluminium alloys in order to provide a basis for follow-on-research that leads to the development of high productivity, SLS/SLM processing of aluminium alloy powders. Moreover, both P/M sintering and PECS of aluminium alloys are evaluated and related to the SLS process with a view to gaining useful insights especially in the aspects of liquid phase sintering (LPS) of aluminium alloys; application of LPS to SLS process; alloying effect in disrupting the surface oxide film of aluminium alloys; and designing of aluminium alloy suitable for the SLS/SLM process. Thereafter, SLS/SLM parameters, powder properties, and different types of lasers with their effects on the processing and densification of aluminium alloys are considered. The microstructure and metallurgical defects associated with SLS/SLM processed parts are also elucidated by highlighting the mechanism of their formation, the main influencing factors, and the remedial measures. Mechanical properties such as hardness, tensile, and fatigue strength of SLS/SLM processed parts are reported. The final part of this paper summarises findings from this review and outlines the trend for future research in the SLS/SLM processing of aluminium alloy powders.

850 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the pre-existing dislocation network, which maintains its configuration during the entire plastic deformation, is an ideal modulator that is able to slow down but not entirely block the dislocation motion.
Abstract: Most mechanisms used for strengthening crystalline materials, e.g. introducing crystalline interfaces, lead to the reduction of ductility. An additive manufacturing process – selective laser melting breaks this trade-off by introducing dislocation network, which produces a stainless steel with both significantly enhanced strength and ductility. Systematic electron microscopy characterization reveals that the pre-existing dislocation network, which maintains its configuration during the entire plastic deformation, is an ideal “modulator” that is able to slow down but not entirely block the dislocation motion. It also promotes the formation of a high density of nano-twins during plastic deformation. This finding paves the way for developing high performance metals by tailoring the microstructure through additive manufacturing processes.

303 citations

Journal ArticleDOI
TL;DR: In this article, the fundamental understanding of structure-properties relationship in automotive steels resistance spot welds is discussed. And a brief review of friction stir spot welding, as an alternative to RSW, is also included.
Abstract: Spot welding, particularly resistance spot welding (RSW), is a critical joining process in automotive industry. The development of advanced high strength steels for applications in automotive industry is accompanied with a challenge to better understand the physical and mechanical metallurgy of these materials during RSW. The present paper critically reviews the fundamental understanding of structure–properties relationship in automotive steels resistance spot welds. The focus is on the metallurgical characteristics, hardness–microstructure correlation, interfacial to pullout failure mode transition and mechanical performance of steel resistance spot welds under quasi-static, fatigue and impact loading conditions. A brief review of friction stir spot welding, as an alternative to RSW, is also included.

295 citations

Journal Article
TL;DR: In this paper, a study was conducted on the arc and melting efficiency of the plasma arc, gas tungsten, gas metal arc, and submerged arc welding processes using A36 steel base metal, and the results were extended to develop a quantitative method for estimating weld metal dilution.
Abstract: A study was conducted on the arc and melting efficiency of the plasma arc, gas tungsten arc, gas metal arc, and submerged arc welding processes The results of this work are extended to develop a quantitative method for estimating weld metal dilution in a companion paper Arc efficiency was determined as a function of current for each process using A36 steel base metal Melting efficiency was evaluated with variations in arc power and travel speed during deposition of austenitic stainless steel filler metal onto A36 steel substrates The arc efficiency did not vary significantly within a given process over the range of currents investigated The consumable electrode processes exhibited the highest arc efficiency (084), followed by the gas tungsten arc (067) and plasma arc (047) processes Resistive heating of the consumable GMAW electrode was calculated to account for a significant difference in arc efficiency between the gas metal arc and gas tungsten arc processes A semi-empirical relation was developed for the melting efficiency as a function of net arc power and travel speed, which described the experimental data well An interaction was observed between the arc and melting efficiency A low arc efficiency factor limits the power delivered to the substrate which, in turn, limits the maximum travel speed for a given set of conditions High melting efficiency is favored by high arc powers and travel speeds As a result, a low arc efficiency can limit the maximum obtainable melting efficiency

209 citations

Journal ArticleDOI
TL;DR: In this article, a unified equation to compute the energy density is proposed to compare works performed with distinct equipment and experimental conditions, covering the major process parameters: power, travel speed, heat source dimension, hatch distance, deposited layer thickness and material grain size.
Abstract: Additive manufacturing technologies based on melting and solidification have considerable similarities with fusion-based welding technologies, either by electric arc or high-power beams. However, several concepts are being introduced in additive manufacturing which have been extensively used in multipass arc welding with filler material. Therefore, clarification of fundamental definitions is important to establish a common background between welding and additive manufacturing research communities. This paper aims to review these concepts, highlighting the distinctive characteristics of fusion welding that can be embraced by additive manufacturing, namely the nature of rapid thermal cycles associated to small size and localized heat sources, the non-equilibrium nature of rapid solidification and its effects on: internal defects formation, phase transformations, residual stresses and distortions. Concerning process optimization, distinct criteria are proposed based on geometric, energetic and thermal considerations, allowing to determine an upper bound limit for the optimum hatch distance during additive manufacturing. Finally, a unified equation to compute the energy density is proposed. This equation enables to compare works performed with distinct equipment and experimental conditions, covering the major process parameters: power, travel speed, heat source dimension, hatch distance, deposited layer thickness and material grain size.

208 citations