scispace - formally typeset
Search or ask a question

Welding Metallurgy of

01 Jan 1987-
About: The article was published on 1987-01-01 and is currently open access. It has received 991 citations till now. The article focuses on the topics: Welding.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the state of the art in selective laser sintering/melting (SLS/SLM) processing of aluminium powders is reviewed from different perspectives, including powder metallurgy (P/M), pulsed electric current (PECS), and laser welding of aluminium alloys.

1,172 citations


Cites background from "Welding Metallurgy of"

  • ...(......................................................3/)(16 33* VSL GSG ∆=∆ θπγ According to Kou [144] and Savage [145], growth of the solid in fusion welding is perceived as being initiated by epitaxial growth from the substrate and proceeds by competitive growth toward the center line of the weld....

    [...]

  • ...100 the predominant mechanism of solidification in fusion welding is the competitive growth in the weld fusion zone, Kou [144] identified and discussed the details of other mechanisms such as dendrite fragmentation, grain detachment, heterogeneous nucleation and surface nucl eatio that may tend can interrupt and/or dominate the solidification structure in fusion welding....

    [...]

  • ...According to Kou [144] and Savage [145], growth of the solid in fusion welding is...

    [...]

  • ...Whereas, the predominant mechanism of solidification in fusion welding is the competitive growth in the weld fusion zone, Kou [144] identified and discussed the details of other mechanisms such as dendrite fragmentation, grain detachment, heterogeneous nucleation and surface nucleatio that may tend can interrupt and/or dominate the solidification structure in fusion welding....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors show that the pre-existing dislocation network, which maintains its configuration during the entire plastic deformation, is an ideal modulator that is able to slow down but not entirely block the dislocation motion.

557 citations

Journal ArticleDOI
TL;DR: In this article, the fundamental understanding of structure-properties relationship in automotive steels resistance spot welds is discussed. And a brief review of friction stir spot welding, as an alternative to RSW, is also included.
Abstract: Spot welding, particularly resistance spot welding (RSW), is a critical joining process in automotive industry. The development of advanced high strength steels for applications in automotive industry is accompanied with a challenge to better understand the physical and mechanical metallurgy of these materials during RSW. The present paper critically reviews the fundamental understanding of structure–properties relationship in automotive steels resistance spot welds. The focus is on the metallurgical characteristics, hardness–microstructure correlation, interfacial to pullout failure mode transition and mechanical performance of steel resistance spot welds under quasi-static, fatigue and impact loading conditions. A brief review of friction stir spot welding, as an alternative to RSW, is also included.

369 citations


Cites background from "Welding Metallurgy of"

  • ...Despite the fact that Schaeffler diagram predicts two phases (austenite plus ferrite) in the FZ of AISI 304 weld nugget microstructure, under rapid solidification conditions such as laser beam welding, a shift in solidification mode may occur.(90) It is generally believed that the change in solidification mode can often result in a fully austenitic microstructure compared to the two phase (ferrite plus austenite) microstructure that is commonly found after primary ferrite solidification....

    [...]

  • ...In coarse grained region, which is beside the FZ, both high cooling rate and large austenite grain size coupled with the formation of the carbon rich austenite promote the formation of the martensite.(90) Figure 15 shows the microstructure gradient in TRIP780 RSW....

    [...]

  • ...The HAZ in carbon steel weldments can be divided into three distinct subregions: (i) upper critical HAZ (UCHAZ): This region experiences peak temperatures above Ac3 transforming BM microstructure into austenite.(90) Depending on the peak temperature the supercritical HAZ can be divided to the following zones: coarse grained HAZ (CGHAZ) and fine grained HAZ....

    [...]

  • ...It is generally believed that the change in solidification mode can often result in a fully austenitic microstructure compared to the two phase (ferrite plus austenite) microstructure that is commonly found after primary ferrite solidification.(90,95,96) Although the change in solidification mode of stainless steel in RSW has not been studied yet, very high cooling rate in RSW process can explain the formation of a fully austenitic weld nugget, as it is the case for laser beam welding....

    [...]

  • ...If this temperature is above Mf, there can be untransformed austenite left in the FZ and it can redecompose to untempered martensite upon cooling to room temperature after tempering.(90) For a particular tempering time and tempering current, there is a minimum cooling time to achieve PF mode....

    [...]

Journal ArticleDOI
TL;DR: In this article, a unified equation to compute the energy density is proposed to compare works performed with distinct equipment and experimental conditions, covering the major process parameters: power, travel speed, heat source dimension, hatch distance, deposited layer thickness and material grain size.

369 citations

Journal ArticleDOI
TL;DR: This study attempted to predict solidification defects by DNN regression with a small dataset that contains 487 data points and found that a pre-trained and fine-tuned DNN shows better generalization performance over shallow neural network, support vector machine, and DNN trained by conventional methods.

314 citations


Cites background from "Welding Metallurgy of"

  • ...Solidification crack is one of the most serious defects which occurs widely in welding [27,28], casting [29–31] and additive manufacturing (AM) [32,33], which occurs at the last stage of solidification when liquid films exist between dendrites boundaries where local strains cannot be accommodated by liquid feeding and solid deformation....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of weld composition and welding heat input on the microstructure and mechanical properties of two submerged arc welded (SAW) joints of API 5L-X80 pipeline steel was investigated.
Abstract: The present work investigated the effect of weld composition and welding heat input on the microstructure and mechanical properties of two submerged arc welded (SAW) joints of API 5L-X80 pipeline steel. The weld metals were joined by two welding consumables (one is rich in C, Ni, Cr, Mo) under different welding heat inputs (20-22 and 34-36 kJ/cm for single-wire and triple-wire processes, respectively). The triple-wire welding procedure with less C, Ni, Cr, Mo alloy contents favors the formation of acicular ferrite (AF), whereas single-wire welding procedure with increased C, Ni, Cr, Mo contents promotes the formation of lath bainite (LB). Nanoindentation is used to evaluate the property of different microstructures. The hardness of lath bainite (LB), granular bainite (GB) and acicular ferrite (AF) is 8.0 GPa, 5.8 GPa and 3.0 GPa, respectively. The Charpy impact energy of weld metal with triple-wire welding procedure (136-165 J) is much greater than that with single-wire welding procedure (15-44 J) at − 45 °C. Larger cleavage facet size is observed in the fracture surface of single-wire weld metal. A computational procedure is developed to understand the temperature fields during the triple-wire welding. Combining the experiments and numerical simulation, simple models to predict the microstructure evolution through the weld thickness are established.

11 citations

Journal ArticleDOI
26 Feb 2020
TL;DR: Alloy X is prone to liquation and solidification cracks in the weldments, because of the development of topologically close-packed precipitates such as σ, P, M6C, and M23C6 carbides during arc weld.
Abstract: Alloy X is prone to liquation and solidification cracks in the weldments, because of the development of topologically close-packed precipitates such as σ, P, M6C, and M23C6 carbides during arc weld...

11 citations

Journal ArticleDOI
TL;DR: In this article, the use of 980 MPa grade dual-phase (DP) steel joints with pulsed current gas metal arc welding (P-GMAW) for reliable weld performance was investigated by comparing actual welded joints with thermo-mechanical simulations.
Abstract: This work investigates the use of 980 MPa grade dual-phase (DP) steel joints with pulsed current gas metal arc welding (P-GMAW) for reliable weld performance by comparing actual welded joints with thermo-mechanical simulations. We focus on the weldment characteristics that can cause mechanical and metallurgical notch effects, which impact the fatigue performance of welds. For this purpose, we conduct experiments investigating the use of two types of filler metals and three heat inputs as variables. We find that HAZ regions in the actual weldments have varied microstructures caused by different phase transformations of martensite corresponding to various peak temperatures experienced. We confirm that improved weld geometry plays a key role in enhancing fatigue performance. We identify and discuss the degradation of mechanical properties arising from increasing heat input, in terms of transformation kinetics investigated by means of HAZ thermo-mechanical simulations and thermodynamic calculations. This study provides an overall understanding of the welded joints of DP steel and suggests a way to improve weldability by adjusting the mechanical and metallurgical parameters of various regions in the weldments.

11 citations

01 Jan 1996
Abstract: WELD METAL SOLIDIFICATION AND SOLIDIFICATION MODELING IN ELECTROSLAG SURFACING

11 citations

Dissertation
15 Nov 2019
TL;DR: In this article, a distinction sera faite entre les different types of de pores crees, dont the morphologie and les dimensions dependent des conditions energetiques de l-interaction laser-matiere.
Abstract: Le procede de fusion laser selective de lit de poudre, egalement appele SLM, permet de fabriquer des pieces metalliques en fusionnant des couches de poudre. Cette methode novatrice donne acces a un large eventail de pieces aux geometries complexes, permettant notamment d’alleger les structures. Toutefois, la bonne tenue mecanique de ce type de pieces, en particulier dans le domaine de la fatigue, reste un enjeu industriel majeur. Les pieces elaborees par SLM peuvent en effet contenir des pores (debouchants ou internes) pouvant deteriorer leurs proprietes mecaniques. Les travaux realises ont pour but de caracteriser l’influence de defauts poreux sur l’endurance en fatigue a grand nombre de cycles de pieces en acier 316L fabriquees par SLM, et s’articulent autour de trois parties. La premiere consiste a identifier les parametres de fabrication SLM controlant la densification et la microstructure des pieces. Une distinction sera faite entre les differents types de pores crees, dont la morphologie et les dimensions dependent des conditions energetiques de l’interaction laser-matiere. Les pores crees seront mis en perspective par la microstructure du materiau brut, dont l’orientation cristallographique et la taille de grain est principalement reliee au recouvrement et la morphologie des cordons. Le deuxieme aspect des travaux a consiste a utiliser les resultats de la recherche parametrique pour generer des eprouvettes de fatigue contenant differentes populations de defauts aleatoires (stochastiques) internes observees en tomographie a rayons X, tout en conservant des microstructures similaires. L’influence relative des populations de defauts internes creees sur l’endurance en fatigue est quantifiee et comparee a la tenue d’eprouvettes optimisees contenant un taux de porosite minimal. Enfin, des defauts modeles internes (deterministes) aux dimensions variables, et dont la position et la morphologie sont controlees, ont ete generes apres optimisation parametrique dans des pieces denses. Un seuil d’amorcage sur defaut interne par rapport aux defauts de surface a ainsi pu etre degage, et pourrait etre lie a l’environnement gazeux local lors de l’amorcage et la propagation de la fissure

11 citations