scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Wetting translucency of graphene

01 Oct 2013-Nature Materials (Nature Research)-Vol. 12, Iss: 10, pp 866-869
TL;DR: For the case of water on supported graphene, about 30% of the van der Waals interactions between the water and the substrate are transmitted through the one-atom-thick layer.
Abstract: For the case of water on supported graphene, about 30% of the van der Waals interactions between the water and the substrate are transmitted through the one-atom-thick layer.
Citations
More filters
Journal ArticleDOI
27 Jul 2017-ACS Nano
TL;DR: Graphene electronic tattoo sensors that are made of graphene are reported, which have been successfully applied to measure electrocardiogram (ECG), electromyogram (EMG), electroencephalogram (EEG), skin temperature, and skin hydration.
Abstract: Tattoo-like epidermal sensors are an emerging class of truly wearable electronics, owing to their thinness and softness. While most of them are based on thin metal films, a silicon membrane, or nanoparticle-based printable inks, we report sub-micrometer thick, multimodal electronic tattoo sensors that are made of graphene. The graphene electronic tattoo (GET) is designed as filamentary serpentines and fabricated by a cost- and time-effective “wet transfer, dry patterning” method. It has a total thickness of 463 ± 30 nm, an optical transparency of ∼85%, and a stretchability of more than 40%. The GET can be directly laminated on human skin just like a temporary tattoo and can fully conform to the microscopic morphology of the surface of skin via just van der Waals forces. The open-mesh structure of the GET makes it breathable and its stiffness negligible. A bare GET is able to stay attached to skin for several hours without fracture or delamination. With liquid bandage coverage, a GET may stay functional on...

447 citations

Journal ArticleDOI
19 Apr 2017-Nature
TL;DR: It is shown that the weak van der Waals potential of graphene cannot completely screen the stronger potential field of many substrates, which enables epitaxial growth to occur despite its presence, and is also applicable to InP and GaP.
Abstract: Epitaxy-the growth of a crystalline material on a substrate-is crucial for the semiconductor industry, but is often limited by the need for lattice matching between the two material systems. This strict requirement is relaxed for van der Waals epitaxy, in which epitaxy on layered or two-dimensional (2D) materials is mediated by weak van der Waals interactions, and which also allows facile layer release from 2D surfaces. It has been thought that 2D materials are the only seed layers for van der Waals epitaxy. However, the substrates below 2D materials may still interact with the layers grown during epitaxy (epilayers), as in the case of the so-called wetting transparency documented for graphene. Here we show that the weak van der Waals potential of graphene cannot completely screen the stronger potential field of many substrates, which enables epitaxial growth to occur despite its presence. We use density functional theory calculations to establish that adatoms will experience remote epitaxial registry with a substrate through a substrate-epilayer gap of up to nine angstroms; this gap can accommodate a monolayer of graphene. We confirm the predictions with homoepitaxial growth of GaAs(001) on GaAs(001) substrates through monolayer graphene, and show that the approach is also applicable to InP and GaP. The grown single-crystalline films are rapidly released from the graphene-coated substrate and perform as well as conventionally prepared films when incorporated in light-emitting devices. This technique enables any type of semiconductor film to be copied from underlying substrates through 2D materials, and then the resultant epilayer to be rapidly released and transferred to a substrate of interest. This process is particularly attractive in the context of non-silicon electronics and photonics, where the ability to re-use the graphene-coated substrates allows savings on the high cost of non-silicon substrates.

372 citations

Journal ArticleDOI
TL;DR: It is established that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM.
Abstract: Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

351 citations

Journal ArticleDOI
TL;DR: The benefits of using large, multilayer graphene sheets are confirmed by experiments, showing that the composites made from graphite nanoplatelets with over 30 μm in diameter deliver a TC consistently higher than those containing monolayer or few-layer graphene at the same graphene loading.
Abstract: The effects of number of graphene layers (n) and size of multilayer graphene sheets on thermal conductivities (TCs) of their epoxy composites are investigated. Molecular dynamics simulations show that the in-plane TCs of graphene sheets and the TCs across the graphene/epoxy interface simultaneously increase with increasing n. However, such higher TCs of multilayer graphene sheets will not translate into higher TCs of bulk composites unless they have large lateral sizes to maintain their aspect ratios comparable to the monolayer counterparts. The benefits of using large, multilayer graphene sheets are confirmed by experiments, showing that the composites made from graphite nanoplatelets (n > 10) with over 30 μm in diameter deliver a TC of ∼1.5 W m–1 K–1 at only 2.8 vol %, consistently higher than those containing monolayer or few-layer graphene at the same graphene loading. Our findings offer a guideline to use cost-effective multilayer graphene as conductive fillers for various thermal management applicat...

281 citations

Journal ArticleDOI
TL;DR: The synthesis of large area MoS2 thin films on insulating substrates (SiO2/Si and Al2O3) with different surface morphology via vapor phase deposition by varying the growth temperatures sheds light on theMoS2-water interaction that is important for the development of devices based on MoS 2 coated surfaces for microfluidic applications.
Abstract: MoS2 is an important member of the transition metal dichalcogenides that is emerging as a potential 2D atomically thin layered material for low power electronic and optoelectronic applications. However, for MoS2 a critical fundamental question of significant importance is how the surface energy and hence the wettability is altered at the nanoscale in particular, the role of crystallinity and orientation. This work reports on the synthesis of large area MoS2 thin films on insulating substrates (SiO2/Si and Al2O3) with different surface morphology via vapor phase deposition by varying the growth temperatures. The samples were examined using transmission electron microscopy and Raman spectroscopy. From contact angle measurements, it is possible to correlate the wettability with crystallinity at the nanoscale. The specific surface energy for few layers MoS2 is estimated to be about 46.5 mJ/m2. Moreover a layer thickness-dependent wettability study suggests that the lower the thickness is, the higher the conta...

247 citations

References
More filters
Journal ArticleDOI
22 Oct 2004-Science
TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Abstract: We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.

55,532 citations

Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

Book
01 Jan 1985
TL;DR: The forces between atoms and molecules are discussed in detail in this article, including the van der Waals forces between surfaces, and the forces between particles and surfaces, as well as their interactions with other forces.
Abstract: The Forces between Atoms and Molecules. Principles and Concepts. Historical Perspective. Some Thermodynamic Aspects of Intermolecular Forces. Strong Intermolecular Forces: Covalent and Coulomb Interactions. Interactions Involving Polar Molecules. Interactions Involving the Polarization of Molecules. van der Waals Forces. Repulsive Forces, Total Intermolecular Pair Potentials, and Liquid Structure. Special Interactions. Hydrogen-Bonding, Hydrophobic, and Hydrophilic Interactions. The Forces between Particles and Surfaces. Some Unifying Concepts in Intermolecular and Interparticle Forces. Contrasts between Intermolecular, Interparticle, and Intersurface Forces. van der Waals Forces between Surfaces. Electrostatic Forces between Surfaces in Liquids. Solvation, Structural and Hydration Forces. Steric and Fluctuation Forces. Adhesion. Fluid-Like Structures and Self-Assembling Systems. Micelles, Bilayers, and Biological Membranes. Thermodynamic Principles of Self-Assembly. Aggregation of Amphiphilic Molecules into Micelles, Bilayers, Vesicles, and Biological Membranes. The Interactions between Lipid Bilayers and Biological Membranes. References. Index.

18,048 citations

Journal ArticleDOI
Changgu Lee1, Xiaoding Wei1, Jeffrey W. Kysar1, James Hone1, James Hone2 
18 Jul 2008-Science
TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract: We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

18,008 citations

Journal ArticleDOI
TL;DR: The roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates are reported, showing high quality and sheet resistances superior to commercial transparent electrodes such as indium tin oxides.
Abstract: The outstanding electrical, mechanical and chemical properties of graphene make it attractive for applications in flexible electronics. However, efforts to make transparent conducting films from graphene have been hampered by the lack of efficient methods for the synthesis, transfer and doping of graphene at the scale and quality required for applications. Here, we report the roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates. The films have sheet resistances as low as approximately 125 ohms square(-1) with 97.4% optical transmittance, and exhibit the half-integer quantum Hall effect, indicating their high quality. We further use layer-by-layer stacking to fabricate a doped four-layer film and measure its sheet resistance at values as low as approximately 30 ohms square(-1) at approximately 90% transparency, which is superior to commercial transparent electrodes such as indium tin oxides. Graphene electrodes were incorporated into a fully functional touch-screen panel device capable of withstanding high strain.

7,709 citations