scispace - formally typeset
Search or ask a question
Journal ArticleDOI

What lurks below the last plateau: experimental studies of the 0.7 × 2e(2)/h conductance anomaly in one-dimensional systems.

14 Oct 2011-Journal of Physics: Condensed Matter (IOP Publishing)-Vol. 23, Iss: 44, pp 443201-443201
TL;DR: In this article, a review report on experimental studies of fractionally quantized plateaus in semiconductor quantum point contacts and quantum wires, focusing on the 0.7 × 2e(2)/h conductance anomaly, its analogues at higher conductances and the zero-bias peak observed in the dc source-drain bias for conductances less than 2e (2) 2 /h.
Abstract: The integer quantised conductance of one-dimensional electron systems is a well-understood effect of quantum confinement. A number of fractionally quantised plateaus are also commonly observed. They are attributed to many-body effects, but their precise origin is still a matter of debate, having attracted considerable interest over the past 15 years. This review reports on experimental studies of fractionally quantised plateaus in semiconductor quantum point contacts and quantum wires, focusing on the 0.7 × 2e(2)/h conductance anomaly, its analogues at higher conductances and the zero-bias peak observed in the dc source-drain bias for conductances less than 2e(2)/h.
Citations
More filters
01 Mar 1998
TL;DR: In this paper, the authors used the Landauer formulation of transport theory to predict that dielectric quantum wires should exhibit quantized thermal conductance at low temperatures in a ballistic phonon regime.
Abstract: Using the Landauer formulation of transport theory, we predict that dielectric quantum wires should exhibit quantized thermal conductance at low temperatures in a ballistic phonon regime. The quantum of thermal conductance is universal, independent of the characteristics of the material, and equal to ${\ensuremath{\pi}}^{2}{k}_{B}^{2}T/3h$ where ${k}_{B}$ is the Boltzmann constant, $h$ is Planck's constant, and $T$ is the temperature. Quantized thermal conductance should be experimentally observable in suspended nanostructures adiabatically coupled to reservoirs, devices that can be realized at the present time.

463 citations

Journal ArticleDOI
TL;DR: A detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, and discusses experiments on mesoscopic quantum point contacts that provide evidence of the environmentally-mediated coupling of quantum states.
Abstract: This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. Examples of such systems may be found in numerous areas of physics, including atomic and nuclear physics, photonics, biophysics, and mesoscopic physics. It is the latter area that provides the main focus of this review, an emphasis that is driven by the capacity that exists to subject mesoscopic devices to unprecedented control. We thus provide a detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region (Q), embedded into a well-defined environment (P) of scattering wavefunctions (with Q + P = 1). The Q subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of Q; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). EPs are singular points in the continuum, at which two resonance states coalesce, that is where they exhibit a non-avoided crossing. DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. Much like conventional phase transitions, the behavior of the system on one side of the DPT does not serve as a reliable indicator of that on the other. In addition to discussing experiments on mesoscopic quantum point contacts that provide evidence of the environmentally-mediated coupling of quantum states, we also review manifestations of DPTs in mesoscopic devices and other systems. These experiments include observations of resonance-trapping behavior in microwave cavities and open quantum dots, phase lapses in tunneling through single-electron transistors, and spin swapping in atomic ensembles. Other possible manifestations of this phenomenon are presented, including various superradiant phenomena in low-dimensional semiconductors. From these discussions a generic picture of OQSs emerges in which the environmentally-mediated coupling between different quantum states plays a critical role in governing the system behavior. The ability to control or manipulate this interaction may even lead to new applications in photonics and electronics.

158 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a detailed discussion of the behavior of OQSs in terms of the projection operator formalism, according to which the system under study is considered to be comprised of a localized region, embedded into a well-defined environment of scattering wavefunctions (with $Q+P=1$).
Abstract: This Report explores recent advances in our understanding of the physics of open quantum systems (OQSs) which consist of some localized region that is coupled to an external environment. Examples of such systems may be found in numerous areas of physics including mesoscopic physics that provides the main focus of this review. We provide a detailed discussion of the behavior of OQSs in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region ($Q$), embedded into a well-defined environment ($P$) of scattering wavefunctions (with $Q+P=1$). The $Q$ subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of $Q$; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. In addition to discussing experiments on mesoscopic quantum point contacts, we also review manifestations of DPTs in mesoscopic devices and other systems. Other possible manifestations of this phenomenon are presented. From these discussions a generic picture of OQSs emerges in which the environmentally-mediated coupling between different quantum states plays a critical role in governing the system behavior.

156 citations

01 Mar 2002
TL;DR: In this paper, the authors present conductance measurements on ultra-low-disorder quantum wires supportive of a spin polarization at B = 0.5-0.7)x2e(2)/h in conductance data.
Abstract: There is controversy as to whether a one-dimensional (1D) electron gas can spin polarize in the absence of a magnetic field. Together with a simple model, we present conductance measurements on ultra-low-disorder quantum wires supportive of a spin polarization at B=0. A spin energy gap is indicated by the presence of a feature in the range (0.5-0.7)x2e(2)/h in conductance data. Importantly, it appears that the spin gap is not constant but a function of the electron density. Data obtained using a bias spectroscopy technique are consistent with the spin gap widening further as the Fermi level is increased.

148 citations

Journal Article
TL;DR: Experimental evidence is presented that a quantum point contact -- a short wire -- made from a semiconductor with high intrinsic spin-orbit coupling can generate a completely spin-polarized current when its lateral confinement is made highly asymmetric.
Abstract: The controlled creation, manipulation and detection of spin-polarized currents by purely electrical means remains a central challenge of spintronics. Efforts to meet this challenge by exploiting the coupling of the electron orbital motion to its spin, in particular Rashba spin-orbit coupling, have so far been unsuccessful. Recently, it has been shown theoretically that the confining potential of a small current-carrying wire with high intrinsic spin-orbit coupling leads to the accumulation of opposite spins at opposite edges of the wire, though not to a spin-polarized current. Here, we present experimental evidence that a quantum point contact -- a short wire -- made from a semiconductor with high intrinsic spin-orbit coupling can generate a completely spin-polarized current when its lateral confinement is made highly asymmetric. By avoiding the use of ferromagnetic contacts or external magnetic fields, such quantum point contacts may make feasible the development of a variety of semiconductor spintronic devices.

127 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the Hartree and Hartree-Fock equations are applied to a uniform electron gas, where the exchange and correlation portions of the chemical potential of the gas are used as additional effective potentials.
Abstract: From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system of interacting electrons are developed. These methods are exact for systems of slowly varying or high density. For the ground state, they lead to self-consistent equations analogous to the Hartree and Hartree-Fock equations, respectively. In these equations the exchange and correlation portions of the chemical potential of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective potential differs from that due to Slater by a factor of $\frac{2}{3}$.) Electronic systems at finite temperatures and in magnetic fields are also treated by similar methods. An appendix deals with a further correction for systems with short-wavelength density oscillations.

47,477 citations

Journal ArticleDOI
TL;DR: In this paper, a theoretical analysis of the shape of the 2s2p^{1}P resonance of He observed in the inelastic scattering of electrons is presented. But the analysis is restricted to the case of one discrete level with two or more continua and of a set of discrete levels with one continuum.
Abstract: The interference of a discrete autoionized state with a continuum gives rise to characteristically asymmetric peaks in excitation spectra. The earlier qualitative interpretation of this phenomenon is extended and revised. A theoretical formula is fitted to the shape of the $2s2p^{1}P$ resonance of He observed in the inelastic scattering of electrons. The fitting determines the parameters of the $2s2p^{1}P$ resonance as follows: $E=60.1$ ev, $\ensuremath{\Gamma}\ensuremath{\sim}0.04$ ev, $f\ensuremath{\sim}2 \mathrm{to} 4\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}3}$. The theory is extended to the interaction of one discrete level with two or more continua and of a set of discrete levels with one continuum. The theory can also give the position and intensity shifts produced in a Rydberg series of discrete levels by interaction with a level of another configuration. The connection with the nuclear theory of resonance scattering is indicated.

8,210 citations

Journal ArticleDOI
TL;DR: In this article, the Hall voltage of a two-dimensional electron gas, realized with a silicon metal-oxide-semiconductor field effect transistor, was measured and it was shown that the Hall resistance at particular, experimentally well-defined surface carrier concentrations has fixed values which depend only on the fine-structure constant and speed of light, and is insensitive to the geometry of the device.
Abstract: Measurements of the Hall voltage of a two-dimensional electron gas, realized with a silicon metal-oxide-semiconductor field-effect transistor, show that the Hall resistance at particular, experimentally well-defined surface carrier concentrations has fixed values which depend only on the fine-structure constant and speed of light, and is insensitive to the geometry of the device. Preliminary data are reported.

5,619 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that there exist effects of potentials on charged particles, even in the region where all the fields (and therefore the forces on the particles) vanish.
Abstract: In this paper, we discuss some interesting properties of the electromagnetic potentials in the quantum domain. We shall show that, contrary to the conclusions of classical mechanics, there exist effects of potentials on charged particles, even in the region where all the fields (and therefore the forces on the particles) vanish. We shall then discuss possible experiments to test these conclusions; and, finally, we shall suggest further possible developments in the interpretation of the potentials.

5,553 citations

Journal ArticleDOI
Philip W. Anderson1
TL;DR: In this article, the conditions necessary in metals for the presence or absence of localized moments on solute ions containing inner shell electrons are analyzed, and a self-consistent Hartree-Fock treatment is applied to show that there is a sharp transition between the magnetic state and the nonmagnetic state, depending on the density of states of free electrons, the $s\ensuremath{-}d$ admixture matrix elements, and the Coulomb correlation integral in the $d$ shell.
Abstract: The conditions necessary in metals for the presence or absence of localized moments on solute ions containing inner shell electrons are analyzed. A self-consistent Hartree-Fock treatment shows that there is a sharp transition between the magnetic state and the nonmagnetic state, depending on the density of states of free electrons, the $s\ensuremath{-}d$ admixture matrix elements, and the Coulomb correlation integral in the $d$ shell; that in the magnetic state the $d$ polarization can be reduced rather severely to nonintegral values, without appreciable free electron polarization because of a compensation effect; and that in the nonmagnetic state the virtual localized $d$ level tends to lie near the Fermi surface. It is emphasized that the condition for the magnetic state depends on the Coulomb (i.e., exchange self-energy) integral, and that the usual type of exchange alone is not large enough in $d$-shell ions to allow magnetic moments to be present. We show that the susceptibility and specific heat due to the inner shell electrons show strongly contrasting behavior even in the nonmagnetic state. A calculation including degenerate $d$ orbitals and $d\ensuremath{-}d$ exchange shows that the orbital angular momentum can be quenched, even when localized spin moments exist, and even on an isolated magnetic atom, by kinetic energy effects.

4,039 citations