scispace - formally typeset
Search or ask a question
Book

WHO classification of tumours of the central nervous system

01 Jan 2007-
TL;DR: The current edition of the WHO Classification of Tumours of the Central Nervous System will serve as an indispensable textbook for all of those involved in the diagnosis and management of patients with tumors of the CNS, and will make a valuable addition to libraries in pathology, radiology, oncology, and neurosurgery departments.
Abstract: Representing the first volume in the fourth edition series of the World Health Organization (WHO) Classification of Tumours, this book provides a welcome mix of old and new. Similar to prior versions, it opens with a summary of the recently revised WHO Classification of Tumours of the Central Nervous System (CNS), the remainder of the book being dedicated to a comprehensive yet succinct presentation of the most current knowledge relative to each individual tumor and familial tumor syndrome. The 73 contributing authors have likewise adopted a familiar standardized format with the following subheadings: definition, grading, incidence, age and sex distribution, localization, clinical features, neuroimaging, macroscopy, histopathology, proliferation, genetic susceptibility, genetics, histogenesis, and prognostic and predictive factors. Although a fair number of images have been recycled from previous editions, the majority is new and includes more than 400 full-color photomicrographs and macroscopic images, as well as numerous neuroimages, informative diagrams and charts. A number of tumor entities new to this version of the WHO Classification are explored in detail, including pilomyxoid astrocytoma, atypical choroid plexus papilloma, angiocentric glioma, extraventricular neurocytoma, papillary glioneuronal tumor, rosetteforming glioneuronal tumor of the fourth ventricle, papillary tumor of the pineal region, pituicytoma, and spindle cell oncocytoma of the adenohypophysis. Perhaps the most noticeable improvement comes by way of a voluminous expansion in the genetics sections of the majority of tumor categories. This update parallels the recent explosion of research utilizing high-resolution genome screening and other molecular techniques. The authors have done an outstanding job in distilling the information housed in over 2,500 cited references into a readerfriendly authoritative reference of CNS neoplasia. In summation, the current edition of the WHO Classification of Tumours of the Central Nervous System will serve as an indispensable textbook for all of those involved in the diagnosis and management of patients with tumors of the CNS, and will make a valuable addition to libraries in pathology, radiology, oncology, and neurosurgery departments.
Citations
More filters
Journal ArticleDOI
TL;DR: The fourth edition of the World Health Organization (WHO) classification of tumours of the central nervous system, published in 2007, lists several new entities, including angiocentric glioma, papillary glioneuronal tumour, rosette-forming glioneurs tumour of the fourth ventricle, Papillary tumourof the pineal region, pituicytoma and spindle cell oncocytoma of the adenohypophysis.
Abstract: The fourth edition of the World Health Organization (WHO) classification of tumours of the central nervous system, published in 2007, lists several new entities, including angiocentric glioma, papillary glioneuronal tumour, rosette-forming glioneuronal tumour of the fourth ventricle, papillary tumour of the pineal region, pituicytoma and spindle cell oncocytoma of the adenohypophysis. Histological variants were added if there was evidence of a different age distribution, location, genetic profile or clinical behaviour; these included pilomyxoid astrocytoma, anaplastic medulloblastoma and medulloblastoma with extensive nodularity. The WHO grading scheme and the sections on genetic profiles were updated and the rhabdoid tumour predisposition syndrome was added to the list of familial tumour syndromes typically involving the nervous system. As in the previous, 2000 edition of the WHO ‘Blue Book’, the classification is accompanied by a concise commentary on clinico-pathological characteristics of each tumour type. The 2007 WHO classification is based on the consensus of an international Working Group of 25 pathologists and geneticists, as well as contributions from more than 70 international experts overall, and is presented as the standard for the definition of brain tumours to the clinical oncology and cancer research communities world-wide.

13,134 citations

Journal ArticleDOI
TL;DR: The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control and Prevention and National Cancer Institute, is the largest population-based registry focused exclusively on primary brain and other central nervous system (CNS) tumors in the US.
Abstract: The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control (CDC) and National Cancer Institute (NCI), is the largest population-based registry focused exclusively on primary brain and other central nervous system (CNS) tumors in the United States (US) and represents the entire US population. This report contains the most up-to-date population-based data on primary brain tumors (malignant and non-malignant) and supersedes all previous CBTRUS reports in terms of completeness and accuracy. All rates (incidence and mortality) are age-adjusted using the 2000 US standard population and presented per 100,000 population. The average annual age-adjusted incidence rate (AAAIR) of all malignant and non-malignant brain and other CNS tumors was 23.79 (Malignant AAAIR=7.08, non-Malignant AAAIR=16.71). This rate was higher in females compared to males (26.31 versus 21.09), Blacks compared to Whites (23.88 versus 23.83), and non-Hispanics compared to Hispanics (24.23 versus 21.48). The most commonly occurring malignant brain and other CNS tumor was glioblastoma (14.5% of all tumors), and the most common non-malignant tumor was meningioma (38.3% of all tumors). Glioblastoma was more common in males, and meningioma was more common in females. In children and adolescents (age 0-19 years), the incidence rate of all primary brain and other CNS tumors was 6.14. An estimated 83,830 new cases of malignant and non-malignant brain and other CNS tumors are expected to be diagnosed in the US in 2020 (24,970 malignant and 58,860 non-malignant). There were 81,246 deaths attributed to malignant brain and other CNS tumors between 2013 and 2017. This represents an average annual mortality rate of 4.42. The 5-year relative survival rate following diagnosis of a malignant brain and other CNS tumor was 23.5% and for a non-malignant brain and other CNS tumor was 82.4%.

9,802 citations

Journal ArticleDOI
TL;DR: The authors found that approximately 5% of patients with malignant gliomas have a family history of glioma and most of these familial cases are associated with rare genetic syndromes, such as neurofibromatosis types 1 and 2, the Li−Fraumeni syndrome (germ-line p53 mutations associated with an increased risk of several cancers), and Turcot's syndrome (intestinal polyposis and brain tumors).
Abstract: Approximately 5% of patients with malignant gliomas have a family history of gliomas. Some of these familial cases are associated with rare genetic syndromes, such as neurofibromatosis types 1 and 2, the Li−Fraumeni syndrome (germ-line p53 mutations associated with an increased risk of several cancers), and Turcot’s syndrome (intestinal polyposis and brain tumors). 10 However, most familial cases have

3,823 citations

Journal ArticleDOI
TL;DR: The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) as mentioned in this paper was organized in conjunction with the MICCAI 2012 and 2013 conferences, and twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low and high grade glioma patients.
Abstract: In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients—manually annotated by up to four raters—and to 65 comparable scans generated using tumor image simulation software Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%–85%), illustrating the difficulty of this task We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource

3,699 citations

Journal ArticleDOI
TL;DR: The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class.
Abstract: BACKGROUND: Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. METHODS: We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. RESULTS: Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. CONCLUSIONS: The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most lower-grade gliomas without an IDH mutation were molecularly and clinically similar to glioblastoma. (Funded by the National Institutes of Health.)

2,346 citations

Related Papers (5)
Trending Questions (1)
WHO classification of tumours of the central nervous system?

The paper provides a comprehensive presentation of the most current knowledge on the classification of tumors of the central nervous system, including information on tumor entities, genetics, histopathology, and prognostic factors.