scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Wind power prediction using deep neural network based meta regression and transfer learning

TL;DR: The effectiveness of the proposed, DNN-MRT technique is expressed by comparing statistical performance measures in terms of root mean squared error (RMSE), mean absolute error (MAE), and standard deviation error (SDE) with other existing techniques.
About: This article is published in Applied Soft Computing.The article was published on 2017-09-01. It has received 285 citations till now. The article focuses on the topics: Deep belief network & Ensemble learning.
Citations
More filters
Journal ArticleDOI
TL;DR: Deep Convolutional Neural Networks (CNNs) as mentioned in this paper are a special type of Neural Networks, which has shown exemplary performance on several competitions related to Computer Vision and Image Processing.
Abstract: Deep Convolutional Neural Network (CNN) is a special type of Neural Networks, which has shown exemplary performance on several competitions related to Computer Vision and Image Processing. Some of the exciting application areas of CNN include Image Classification and Segmentation, Object Detection, Video Processing, Natural Language Processing, and Speech Recognition. The powerful learning ability of deep CNN is primarily due to the use of multiple feature extraction stages that can automatically learn representations from the data. The availability of a large amount of data and improvement in the hardware technology has accelerated the research in CNNs, and recently interesting deep CNN architectures have been reported. Several inspiring ideas to bring advancements in CNNs have been explored, such as the use of different activation and loss functions, parameter optimization, regularization, and architectural innovations. However, the significant improvement in the representational capacity of the deep CNN is achieved through architectural innovations. Notably, the ideas of exploiting spatial and channel information, depth and width of architecture, and multi-path information processing have gained substantial attention. Similarly, the idea of using a block of layers as a structural unit is also gaining popularity. This survey thus focuses on the intrinsic taxonomy present in the recently reported deep CNN architectures and, consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature-map exploitation, channel boosting, and attention. Additionally, the elementary understanding of CNN components, current challenges, and applications of CNN are also provided.

1,328 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed and evaluated contemporary forecasting techniques for photovoltaics into power grids, and concluded that ensembles of artificial neural networks are best for forecasting short-term PV power forecast and online sequential extreme learning machine superb for adaptive networks; while Bootstrap technique optimum for estimating uncertainty.
Abstract: Integration of photovoltaics into power grids is difficult as solar energy is highly dependent on climate and geography; often fluctuating erratically. This causes penetrations and voltage surges, system instability, inefficient utilities planning and financial loss. Forecast models can help; however, time stamp, forecast horizon, input correlation analysis, data pre and post-processing, weather classification, network optimization, uncertainty quantification and performance evaluations need consideration. Thus, contemporary forecasting techniques are reviewed and evaluated. Input correlational analyses reveal that solar irradiance is most correlated with Photovoltaic output, and so, weather classification and cloud motion study are crucial. Moreover, the best data cleansing processes: normalization and wavelet transforms, and augmentation using generative adversarial network are recommended for network training and forecasting. Furthermore, optimization of inputs and network parameters, using genetic algorithm and particle swarm optimization, is emphasized. Next, established performance evaluation metrics MAE, RMSE and MAPE are discussed, with suggestions for including economic utility metrics. Subsequently, modelling approaches are critiqued, objectively compared and categorized into physical, statistical, artificial intelligence, ensemble and hybrid approaches. It is determined that ensembles of artificial neural networks are best for forecasting short term photovoltaic power forecast and online sequential extreme learning machine superb for adaptive networks; while Bootstrap technique optimum for estimating uncertainty. Additionally, convolutional neural network is found to excel in eliciting a model's deep underlying non-linear input-output relationships. The conclusions drawn impart fresh insights in photovoltaic power forecast initiatives, especially in the use of hybrid artificial neural networks and evolutionary algorithms.

446 citations


Cites background or methods from "Wind power prediction using deep ne..."

  • ...Many statistical tools are available, among these, RMSE is very robust and effective due to its ability to handle outliers and spikes in data....

    [...]

  • ...Both (MAE and RMSE) average metrics, however, can range from zero to infinity [65,66]....

    [...]

  • ...Another researcher, Qureshi, propounded the application of DL for short-term wind power prediction [64]....

    [...]

  • ...They compared their forecast accuracy by utilizing three different statistical measures, namely: RMSE, MAE and WMAE; concluding that their predictions were superior to the BP-ANN based PVPF method being currently used at the site [76,116]....

    [...]

  • ...However, for longer horizons, i.e. 20 days to a month, the root mean square error (RMSE) of the proposed model increased to 24%; equalling persistence models’ performance....

    [...]

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper proposed a new intelligent fault diagnosis framework, i.e., deep transfer network (DTN), which generalizes deep learning model to domain adaptation scenario, by extending the marginal distribution adaptation to joint distribution adaptation (JDA).
Abstract: In recent years, an increasing popularity of deep learning model for intelligent condition monitoring and diagnosis as well as prognostics used for mechanical systems and structures has been observed. In the previous studies, however, a major assumption accepted by default, is that the training and testing data are taking from same feature distribution. Unfortunately, this assumption is mostly invalid in real application, resulting in a certain lack of applicability for the traditional diagnosis approaches. Inspired by the idea of transfer learning that leverages the knowledge learnt from rich labeled data in source domain to facilitate diagnosing a new but similar target task, a new intelligent fault diagnosis framework, i.e., deep transfer network (DTN), which generalizes deep learning model to domain adaptation scenario, is proposed in this paper. By extending the marginal distribution adaptation (MDA) to joint distribution adaptation (JDA), the proposed framework can exploit the discrimination structures associated with the labeled data in source domain to adapt the conditional distribution of unlabeled target data, and thus guarantee a more accurate distribution matching. Extensive empirical evaluations on three fault datasets validate the applicability and practicability of DTN, while achieving many state-of-the-art transfer results in terms of diverse operating conditions, fault severities and fault types.

321 citations

Journal ArticleDOI
TL;DR: The use of ensembles is recommended to forecast agricultural commodities prices one month ahead, since a more assertive performance is observed, which allows to increase the accuracy of the constructed model and reduce decision-making risk.

244 citations

Journal ArticleDOI
TL;DR: A novel method called deep wavelet auto-encoder (DWAE) with extreme learning machine (ELM) is proposed for intelligent fault diagnosis of rolling bearing and the results confirm that the proposed method is superior to the traditional methods and standard deep learning methods.
Abstract: Unsupervised feature learning from the raw vibration data is a great challenge for rolling bearing intelligent fault diagnosis. In this paper, a novel method called deep wavelet auto-encoder (DWAE) with extreme learning machine (ELM) is proposed for intelligent fault diagnosis of rolling bearing. Firstly, wavelet function is employed as the nonlinear activation function to design wavelet auto-encoder (WAE), which can effectively capture the signal characteristics. Secondly, a DWAE is constructed with multiple WAEs to enhance the unsupervised feature learning ability. Finally, ELM is adopted as the classifier to accurately identify different bearing faults. The proposed method is applied to analyze the experimental bearing vibration signals, and the results confirm that the proposed method is superior to the traditional methods and standard deep learning methods.

235 citations

References
More filters
Journal ArticleDOI
Ma Lei1, Luan Shi-yan1, Jiang Chuanwen1, Liu Hongling1, Zhang Yan1 
TL;DR: A bibliographical survey on the general background of research and developments in the fields of wind speed and wind power forecasting and further direction for additional research and application is proposed.
Abstract: In the world, wind power is rapidly becoming a generation technology of significance. Unpredictability and variability of wind power generation is one of the fundamental difficulties faced by power system operators. Good forecasting tools are urgent needed under the relevant issues associated with the integration of wind energy into the power system. This paper gives a bibliographical survey on the general background of research and developments in the fields of wind speed and wind power forecasting. Based on the assessment of wind power forecasting models, further direction for additional research and application is proposed.

1,073 citations

Journal ArticleDOI
TL;DR: A review of the current methods and advances in wind power forecasting and prediction can be found in this article, where numerical wind power prediction methods from global to local scales, ensemble forecasting, upscaling and downscaling processes are discussed.

1,017 citations

Journal ArticleDOI
TL;DR: This paper makes a brief review on 30 years of history of the wind power short-term prediction, since the first ideas and sketches to the actual state of the art on models and tools, giving emphasis to the most significant proposals and developments.
Abstract: This paper makes a brief review on 30 years of history of the wind power short-term prediction, since the first ideas and sketches on the theme to the actual state of the art on models and tools, giving emphasis to the most significant proposals and developments. The two principal lines of thought on short-term prediction (mathematical and physical) are indistinctly treated here and comparisons between models and tools are avoided, mainly because, on the one hand, a standard for a measure of performance is still not adopted and, on the other hand, it is very important that the data are exactly the same in order to compare two models (this fact makes it almost impossible to carry out a quantitative comparison between a huge number of models and methods). In place of a quantitative description, a qualitative approach is preferred for this review, remarking the contribution (and innovative aspect) of each model. On the basis of the review, some topics for future research are pointed out.

594 citations

Journal ArticleDOI
TL;DR: An effective and reliable deep learning method known as stacked denoising autoencoder (SDA), which is shown to be suitable for certain health state identifications for signals containing ambient noise and working condition fluctuations, is investigated.

591 citations

Journal ArticleDOI
TL;DR: Compared with traditional neural network, the SAE-based DNN can achieve superior performance for feature learning and classification in the field of induction motor fault diagnosis.

562 citations