scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Wireless Networks With RF Energy Harvesting: A Contemporary Survey

TL;DR: This paper presents an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications, and explores various key design issues according to the network types, i.e., single-hop networks, multiantenna networks, relay networks, and cognitive radio networks.
Abstract: Radio frequency (RF) energy transfer and harvesting techniques have recently become alternative methods to power the next-generation wireless networks As this emerging technology enables proactive energy replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service requirements In this paper, we present a comprehensive literature review on the research progresses in wireless networks with RF energy harvesting capability, which is referred to as RF energy harvesting networks (RF-EHNs) First, we present an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications Then, we present the background in circuit design as well as the state-of-the-art circuitry implementations and review the communication protocols specially designed for RF-EHNs We also explore various key design issues in the development of RF-EHNs according to the network types, ie, single-hop networks, multiantenna networks, relay networks, and cognitive radio networks Finally, we envision some open research directions
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of the latest research on both green 5G techniques and energy harvesting for communication, and some technical challenges and potential research topics for realizing sustainable green wireless networks are also identified.
Abstract: The stringent requirements of a 1000x increase in data traffic and 1 ms round-trip latency have made limiting the potentially tremendous ensuing energy consumption one of the most challenging problems for the design of the upcoming 5G networks. To enable sustainable 5G networks, new technologies have been proposed to improve the system energy efficiency, and alternative energy sources are introduced to reduce our dependence on traditional fossil fuels. In particular, various 5G techniques target the reduction of the energy consumption without sacrificing the quality of service. Meanwhile, energy harvesting technologies, which enable communication transceivers to harvest energy from various renewable resources and ambient radio frequency signals for communication, have drawn significant interest from both academia and industry. In this article, we provide an overview of the latest research on both green 5G techniques and energy harvesting for communication. In addition, some technical challenges and potential research topics for realizing sustainable green 5G networks are also identified.

535 citations

Journal ArticleDOI
TL;DR: An overview of the past and recent developments in energy harvesting communications and networking is presented and a number of possible future research avenues are highlighted.
Abstract: Recent emphasis on green communications has generated great interest in the investigations of energy harvesting communications and networking. Energy harvesting from ambient energy sources can potentially reduce the dependence on the supply of grid or battery energy, providing many attractive benefits to the environment and deployment. However, unlike the conventional stable energy, the intermittent and random nature of the renewable energy makes it challenging in the realization of energy harvesting transmission schemes. Extensive research studies have been carried out in recent years to address this inherent challenge from several aspects: energy sources and models, energy harvesting and usage protocols, energy scheduling and optimization, implementation of energy harvesting in cooperative, cognitive radio, multiuser and cellular networks, etc. However, there has not been a comprehensive survey to lay out the complete picture of recent advances and future directions. To fill such a gap, in this paper, we present an overview of the past and recent developments in these areas and highlight a number of possible future research avenues.

519 citations


Cites background from "Wireless Networks With RF Energy Ha..."

  • ...Unlike the traditional battery-operated communications, the energy of ambient energy sources available to energy harvesting communication nodes is time-variant and often sporadic even though there is potentially an infinite amount of energy....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of the key networking structures and performance enhancing techniques to build an efficient wireless powered communication networking (WPCN), and point out new and challenging future research directions for WPCN.
Abstract: Wireless powered communication networking (WPCN) is a new networking paradigm where the battery of wireless communication devices can be remotely replenished by means of microwave wireless power transfer (WPT) technology. WPCN eliminates the need for frequent manual battery replacement/recharging, and thus significantly improves the performance over conventional battery-powered communication networks in many aspects, such as higher throughput, longer device lifetime, and lower network operating cost. However, the design and future application of WPCN is essentially challenged by the low WPT efficiency over long distance, and the complex nature of joint wireless information and power transfer within the same network. In this article, we provide an overview of the key networking structures and performance enhancing techniques to build an efficient WPCN. In addition, we point out new and challenging future research directions for WPCN.

517 citations

Journal ArticleDOI
TL;DR: The evolving fifth generation (5G) cellular wireless networks are envisioned to provide higher data rates, enhance end-user quality-of-experience (QoE), reduce end-to-end latency, and lower energy consumption as mentioned in this paper.
Abstract: The evolving fifth generation (5G) cellular wireless networks are envisioned to provide higher data rates, enhance end-user quality-of-experience (QoE), reduce end-to-end latency, and lower energy consumption This article presents several emerging technologies which could enable and define future 5G mobile communication standards and cellular networks We highlight the key ideas for each technology and the major open research challenges related to measurement, testing and validating the performance of 5G system components Then, we highlight the fundamental research challenges for resource management in 5G systems

510 citations

Journal ArticleDOI
TL;DR: In this paper, a UAV-enabled MEC wireless powered system is investigated under both partial and binary computation offloading modes, subject to the energy harvesting causal constraint and the UAV's speed constraint.
Abstract: Mobile-edge computing (MEC) and wireless power transfer are two promising techniques to enhance the computation capability and to prolong the operational time of low-power wireless devices that are ubiquitous in Internet of Things. However, the computation performance and the harvested energy are significantly impacted by the severe propagation loss. In order to address this issue, an unmanned aerial vehicle (UAV)-enabled MEC wireless-powered system is studied in this paper. The computation rate maximization problems in a UAV-enabled MEC wireless powered system are investigated under both partial and binary computation offloading modes, subject to the energy-harvesting causal constraint and the UAV’s speed constraint. These problems are non-convex and challenging to solve. A two-stage algorithm and a three-stage alternative algorithm are, respectively, proposed for solving the formulated problems. The closed-form expressions for the optimal central processing unit frequencies, user offloading time, and user transmit power are derived. The optimal selection scheme on whether users choose to locally compute or offload computation tasks is proposed for the binary computation offloading mode. Simulation results show that our proposed resource allocation schemes outperform other benchmark schemes. The results also demonstrate that the proposed schemes converge fast and have low computational complexity.

496 citations

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Wireless Networks With RF Energy Ha..." refers methods in this paper

  • ...A practical and widely adopted probabilistic model is a Rayleigh model [26], which represents the situation when there is no line-of-sight channel between a transmitter and receiver....

    [...]

Book
01 Jan 1982
TL;DR: The most up-to-date resource available on antenna theory and design as mentioned in this paper provides an extended coverage of ABET design procedures and equations making meeting ABET requirements easy and preparing readers for authentic situations in industry.
Abstract: The most-up-to-date resource available on antenna theory and design Expanded coverage of design procedures and equations makes meeting ABET design requirements easy and prepares readers for authentic situations in industry New coverage of microstrip antennas exposes readers to information vital to a wide variety of practical applicationsComputer programs at end of each chapter and the accompanying disk assist in problem solving, design projects and data plotting-- Includes updated material on moment methods, radar cross section, mutual impedances, aperture and horn antennas, and antenna measurements-- Outstanding 3-dimensional illustrations help readers visualize the entire antenna radiation pattern

14,065 citations


"Wireless Networks With RF Energy Ha..." refers methods in this paper

  • ...avelength of the RF signals and the distance between an RF energy source and the harvesting node. The harvested RF power from a transmitter in free space can be calculated based on the Friis equation [24] as follows: P R =P T G TG Rλ2 (4πd)2L (1) where P R is the received power, P T is the transmit power, L is the path loss factor, G T is the transmit antenna gain, G R is the receive antenna gain, λ i...

    [...]

Journal ArticleDOI
TL;DR: This work reveals that it is in general not optimal to regard the information to be multicast as a "fluid" which can simply be routed or replicated, and by employing coding at the nodes, which the work refers to as network coding, bandwidth can in general be saved.
Abstract: We introduce a new class of problems called network information flow which is inspired by computer network applications. Consider a point-to-point communication network on which a number of information sources are to be multicast to certain sets of destinations. We assume that the information sources are mutually independent. The problem is to characterize the admissible coding rate region. This model subsumes all previously studied models along the same line. We study the problem with one information source, and we have obtained a simple characterization of the admissible coding rate region. Our result can be regarded as the max-flow min-cut theorem for network information flow. Contrary to one's intuition, our work reveals that it is in general not optimal to regard the information to be multicast as a "fluid" which can simply be routed or replicated. Rather, by employing coding at the nodes, which we refer to as network coding, bandwidth can in general be saved. This finding may have significant impact on future design of switching systems.

8,533 citations


"Wireless Networks With RF Energy Ha..." refers background in this paper

  • ...Network coding [231] is well-known to be energy efficient in information transmission....

    [...]

Journal ArticleDOI
06 Jul 2007-Science
TL;DR: A quantitative model is presented describing the power transfer of self-resonant coils in a strongly coupled regime, which matches the experimental results to within 5%.
Abstract: Using self-resonant coils in a strongly coupled regime, we experimentally demonstrated efficient nonradiative power transfer over distances up to 8 times the radius of the coils We were able to transfer 60 watts with ∼40% efficiency over distances in excess of 2 meters We present a quantitative model describing the power transfer, which matches the experimental results to within 5% We discuss the practical applicability of this system and suggest directions for further study

5,284 citations


"Wireless Networks With RF Energy Ha..." refers background in this paper

  • ...Magnetic resonance coupling [7] utilizes evanescent-wave coupling to generate and transfer electrical energy between two resonators....

    [...]

Journal ArticleDOI
TL;DR: While the proposed algorithms are suboptimal, they lead to simpler transmitter and receiver structures and allow for a reasonable tradeoff between performance and complexity.
Abstract: The use of space-division multiple access (SDMA) in the downlink of a multiuser multiple-input, multiple-output (MIMO) wireless communications network can provide a substantial gain in system throughput. The challenge in such multiuser systems is designing transmit vectors while considering the co-channel interference of other users. Typical optimization problems of interest include the capacity problem - maximizing the sum information rate subject to a power constraint-or the power control problem-minimizing transmitted power such that a certain quality-of-service metric for each user is met. Neither of these problems possess closed-form solutions for the general multiuser MIMO channel, but the imposition of certain constraints can lead to closed-form solutions. This paper presents two such constrained solutions. The first, referred to as "block-diagonalization," is a generalization of channel inversion when there are multiple antennas at each receiver. It is easily adapted to optimize for either maximum transmission rate or minimum power and approaches the optimal solution at high SNR. The second, known as "successive optimization," is an alternative method for solving the power minimization problem one user at a time, and it yields superior results in some (e.g., low SNR) situations. Both of these algorithms are limited to cases where the transmitter has more antennas than all receive antennas combined. In order to accommodate more general scenarios, we also propose a framework for coordinated transmitter-receiver processing that generalizes the two algorithms to cases involving more receive than transmit antennas. While the proposed algorithms are suboptimal, they lead to simpler transmitter and receiver structures and allow for a reasonable tradeoff between performance and complexity.

3,291 citations


"Wireless Networks With RF Energy Ha..." refers methods in this paper

  • ...To mitigate th interference, the authors propose to use block diagonaliza tion preceding method which can support a limited number of information receivers due to zero-forcing channel inversi on [150]....

    [...]