scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Wireless Networks With RF Energy Harvesting: A Contemporary Survey

TL;DR: This paper presents an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications, and explores various key design issues according to the network types, i.e., single-hop networks, multiantenna networks, relay networks, and cognitive radio networks.
Abstract: Radio frequency (RF) energy transfer and harvesting techniques have recently become alternative methods to power the next-generation wireless networks As this emerging technology enables proactive energy replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service requirements In this paper, we present a comprehensive literature review on the research progresses in wireless networks with RF energy harvesting capability, which is referred to as RF energy harvesting networks (RF-EHNs) First, we present an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications Then, we present the background in circuit design as well as the state-of-the-art circuitry implementations and review the communication protocols specially designed for RF-EHNs We also explore various key design issues in the development of RF-EHNs according to the network types, ie, single-hop networks, multiantenna networks, relay networks, and cognitive radio networks Finally, we envision some open research directions
Citations
More filters
Journal ArticleDOI
TL;DR: Numerical results unveil a substantial performance gain that can be achieved if the resource allocation design is based on the proposed non-linear energy harvesting model instead of the traditional linear model.
Abstract: In this letter, we propose a practical non-linear energy harvesting model and design a resource allocation algorithm for simultaneous wireless information and power transfer (SWIPT) systems. The algorithm design is formulated as a non-convex optimization problem for the maximization of the total harvested power at energy harvesting receivers subject to minimum required signal-to-interference-plus-noise ratios (SINRs) at multiple information receivers. We transform the considered non-convex objective function from sum-of-ratios form into an equivalent objective function in subtractive form, which enables the derivation of an efficient iterative resource allocation algorithm. In each iteration, a rank-constrained semidefinite program (SDP) is solved optimally by SDP relaxation. Numerical results unveil a substantial performance gain that can be achieved if the resource allocation design is based on the proposed non-linear energy harvesting model instead of the traditional linear model.

863 citations

Journal ArticleDOI
TL;DR: This paper provides a survey-style introduction to dense small cell networks and considers many research directions, namely, user association, interference management, energy efficiency, spectrum sharing, resource management, scheduling, backhauling, propagation modeling, and the economics of UDN deployment.
Abstract: The exponential growth and availability of data in all forms is the main booster to the continuing evolution in the communications industry. The popularization of traffic-intensive applications including high definition video, 3-D visualization, augmented reality, wearable devices, and cloud computing defines a new era of mobile communications. The immense amount of traffic generated by today’s customers requires a paradigm shift in all aspects of mobile networks. Ultradense network (UDN) is one of the leading ideas in this racetrack. In UDNs, the access nodes and/or the number of communication links per unit area are densified. In this paper, we provide a survey-style introduction to dense small cell networks. Moreover, we summarize and compare some of the recent achievements and research findings. We discuss the modeling techniques and the performance metrics widely used to model problems in UDN. Also, we present the enabling technologies for network densification in order to understand the state-of-the-art. We consider many research directions in this survey, namely, user association, interference management, energy efficiency, spectrum sharing, resource management, scheduling, backhauling, propagation modeling, and the economics of UDN deployment. Finally, we discuss the challenges and open problems to the researchers in the field or newcomers who aim to conduct research in this interesting and active area of research.

828 citations


Cites background from "Wireless Networks With RF Energy Ha..."

  • ...ent scopes, specifically Heterogeneous Networks (HetNets), massive multiple-input multiple-output (massive-MIMO) networks, millimeter waves (mmWaves) networks, and energy harvesting networks [9]....

    [...]

Book ChapterDOI
01 Jan 1997
TL;DR: In this paper, a nonlinear fractional programming problem is considered, where the objective function has a finite optimal value and it is assumed that g(x) + β + 0 for all x ∈ S,S is non-empty.
Abstract: In this chapter we deal with the following nonlinear fractional programming problem: $$P:\mathop{{\max }}\limits_{{x \in s}} q(x) = (f(x) + \alpha )/((x) + \beta )$$ where f, g: R n → R, α, β ∈ R, S ⊆ R n . To simplify things, and without restricting the generality of the problem, it is usually assumed that, g(x) + β + 0 for all x ∈ S,S is non-empty and that the objective function has a finite optimal value.

797 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive overview of wireless charging techniques, the developments in technical standards, and their recent advances in network applications, with regard to network applications and discuss open issues and challenges in implementing wireless charging technologies.
Abstract: Wireless charging is a technology of transmitting power through an air gap to electrical devices for the purpose of energy replenishment. The recent progress in wireless charging techniques and development of commercial products have provided a promising alternative way to address the energy bottleneck of conventionally portable battery-powered devices. However, the incorporation of wireless charging into the existing wireless communication systems also brings along a series of challenging issues with regard to implementation, scheduling, and power management. In this paper, we present a comprehensive overview of wireless charging techniques, the developments in technical standards, and their recent advances in network applications. In particular, with regard to network applications, we review the static charger scheduling strategies, mobile charger dispatch strategies and wireless charger deployment strategies. Additionally, we discuss open issues and challenges in implementing wireless charging technologies. Finally, we envision some practical future network applications of wireless charging.

718 citations

Journal ArticleDOI
TL;DR: This survey provides an overview of energy-efficient wireless communications, reviews seminal and recent contribution to the state-of-the-art, including the papers published in this special issue, and discusses the most relevant research challenges to be addressed in the future.
Abstract: After about a decade of intense research, spurred by both economic and operational considerations, and by environmental concerns, energy efficiency has now become a key pillar in the design of communication networks. With the advent of the fifth generation of wireless networks, with millions more base stations and billions of connected devices, the need for energy-efficient system design and operation will be even more compelling. This survey provides an overview of energy-efficient wireless communications, reviews seminal and recent contribution to the state-of-the-art, including the papers published in this special issue, and discusses the most relevant research challenges to be addressed in the future.

653 citations


Cites background from "Wireless Networks With RF Energy Ha..."

  • ...The paper [145], as an instance, presents an analysis of the spectral efficiency of single-carrier and OFDM transmission in massive MIMO systems that use one-bit analog-to-digital converters (ADCs), while a capacity analysis of one-bit quantized MIMO systems with transmitter CSI is reported in…...

    [...]

References
More filters
Proceedings ArticleDOI
21 Nov 2008
TL;DR: In this article, the design and analysis of very low-voltage driven charge pumps powered by RF telemetry is proposed and two test chips have been fabricated, an 11 stage pump and a 12 stage pump in 1.2 V 0.13mum standard CMOS process.
Abstract: The design and analysis of very low-voltage driven charge pumps powered by RF telemetry is proposed. The use of thick oxide zero threshold voltage transistors along with appropriately sized boosting capacitors and matching techniques allows for charge pumps capable of achieving high voltage DC outputs with very low input voltages. Two test chips have been fabricated, an 11 stage pump and a 12 stage pump in 1.2 V 0.13-mum standard CMOS process. The pumps are capable of generating an output voltage above 1.2 volts with input voltages below 100 mV making them ideal for generating DC supplies from low RF scavenged sources.

4 citations


"Wireless Networks With RF Energy Ha..." refers methods in this paper

  • ...Research progress has covered designs of RFID tags with RF energy harvesting in rectenna [ 53], [54], [55], rectifier [56], [57], RF-to-DC converter [ 58], [59], charge pump [60], [61], [62] and power harvester [ 63], [64], [65]....

    [...]