scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Wireless sensor networks: a survey

15 Mar 2002-Computer Networks (Elsevier North-Holland, Inc.)-Vol. 38, Iss: 4, pp 393-422
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.
About: This article is published in Computer Networks.The article was published on 2002-03-15. It has received 17936 citations till now. The article focuses on the topics: Key distribution in wireless sensor networks & Wireless sensor network.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive experimental study on the statistical characterization of the wireless channel in different electric-power-system environments, including a 500-kV substation, an industrial power control room, and an underground network transformer vault is presented.
Abstract: The collaborative and low-cost nature of wireless sensor networks (WSNs) brings significant advantages over traditional communication technologies used in today's electric power systems. Recently, WSNs have been widely recognized as a promising technology that can enhance various aspects of today's electric power systems, including generation, delivery, and utilization, making them a vital component of the next-generation electric power system, the smart grid. However, harsh and complex electric-power-system environments pose great challenges in the reliability of WSN communications in smart-grid applications. This paper starts with an overview of the application of WSNs for electric power systems along with their opportunities and challenges and opens up future work in many unexploited research areas in diverse smart-grid applications. Then, it presents a comprehensive experimental study on the statistical characterization of the wireless channel in different electric-power-system environments, including a 500-kV substation, an industrial power control room, and an underground network transformer vault. Field tests have been performed on IEEE 802.15.4-compliant wireless sensor nodes in real-world power delivery and distribution systems to measure background noise, channel characteristics, and attenuation in the 2.4-GHz frequency band. Overall, the empirical measurements and experimental results provide valuable insights about IEEE 802.15.4-compliant sensor network platforms and guide design decisions and tradeoffs for WSN-based smart-grid applications.

1,255 citations


Cites background from "Wireless sensor networks: a survey"

  • ...monitoring and diagnostic systems [1], [4], [9], [11], [19], [30]....

    [...]

Journal ArticleDOI
TL;DR: This paper provides a detailed investigation of sensor devices, physical layer, data link layer, and radio technology aspects of BAN research, and presents a taxonomy of B Ban projects that have been introduced/proposed to date.
Abstract: Advances in wireless communication technologies, such as wearable and implantable biosensors, along with recent developments in the embedded computing area are enabling the design, development, and implementation of body area networks. This class of networks is paving the way for the deployment of innovative healthcare monitoring applications. In the past few years, much of the research in the area of body area networks has focused on issues related to wireless sensor designs, sensor miniaturization, low-power sensor circuitry, signal processing, and communications protocols. In this paper, we present an overview of body area networks, and a discussion of BAN communications types and their related issues. We provide a detailed investigation of sensor devices, physical layer, data link layer, and radio technology aspects of BAN research. We also present a taxonomy of BAN projects that have been introduced/proposed to date. Finally, we highlight some of the design challenges and open issues that still need to be addressed to make BANs truly ubiquitous for a wide range of applications.

1,239 citations


Cites background from "Wireless sensor networks: a survey"

  • ...Although many protocols and algorithms have been proposed for traditional wireless sensor networks (WSNs) [1], they are not well suited to the unique features and application requirements of BAN....

    [...]

Book ChapterDOI
31 Aug 2004
TL;DR: This paper enrichs interactive sensor querying with statistical modeling techniques, and demonstrates that such models can help provide answers that are both more meaningful, and, by introducing approximations with probabilistic confidences, significantly more efficient to compute in both time and energy.
Abstract: Declarative queries are proving to be an attractive paradigm for ineracting with networks of wireless sensors. The metaphor that "the sensornet is a database" is problematic, however, because sensors do not exhaustively represent the data in the real world. In order to map the raw sensor readings onto physical reality, a model of that reality is required to complement the readings. In this paper, we enrich interactive sensor querying with statistical modeling techniques. We demonstrate that such models can help provide answers that are both more meaningful, and, by introducing approximations with probabilistic confidences, significantly more efficient to compute in both time and energy. Utilizing the combination of a model and live data acquisition raises the challenging optimization problem of selecting the best sensor readings to acquire, balancing the increase in the confidence of our answer against the communication and data acquisition costs in the network. We describe an exponential time algorithm for finding the optimal solution to this optimization problem, and a polynomial-time heuristic for identifying solutions that perform well in practice. We evaluate our approach on several real-world sensor-network data sets, taking into account the real measured data and communication quality, demonstrating that our model-based approach provides a high-fidelity representation of the real phenomena and leads to significant performance gains versus traditional data acquisition techniques.

1,218 citations

Proceedings ArticleDOI
28 Sep 2002
TL;DR: A node-scheduling scheme, which can reduce system overall energy consumption, therefore increasing system lifetime, by turning off some redundant nodes, and guarantees that the original sensing coverage is maintained after turning off redundant nodes.
Abstract: In wireless sensor networks that consist of a large number of low-power, short-lived, unreliable sensors, one of the main design challenges is to obtain long system lifetime, as well as maintain sufficient sensing coverage and reliability. In this paper, we propose a node-scheduling scheme, which can reduce system overall energy consumption, therefore increasing system lifetime, by turning off some redundant nodes. Our coverage-based off-duty eligibility rule and backoff-based node-scheduling scheme guarantees that the original sensing coverage is maintained after turning off redundant nodes. We implement our proposed scheme in NS-2 as an extension of the LEACH protocol. We compare the energy consumption of LEACH with and without the extension and analyze the effectiveness of our scheme in terms of energy saving. Simulation results show that our scheme can preserve the system coverage to the maximum extent. In addition, after the node-scheduling scheme turns off some nodes, certain redundancy is still guaranteed, which we believe can provide enough sensing reliability in many applications.

1,179 citations


Cites background or methods from "Wireless sensor networks: a survey"

  • ...[ 1-4 ]. A wireless sensor network consists of tiny sensing devices, deployed in a region of interest....

    [...]

  • ...On the other hand, protocol designers are seeking an energy efficient communication architecture, which involves all levels from the physical layer to the application layer [ 4 ]....

    [...]

  • ...Our work is dedicated to scheduling nodes by using application knowledge (i.e., it belongs to one branch of application layer protocols according to the categories in [ 4 ]) and does not address the data communication problem....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Wireless sensor networks: a survey" refers background in this paper

  • ...The exponent n is closer to four for low-lying antennae and nearground channels [72,82], as is typical in sensor network communication....

    [...]

Proceedings ArticleDOI
04 Jan 2000
TL;DR: The Low-Energy Adaptive Clustering Hierarchy (LEACH) as mentioned in this paper is a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network.
Abstract: Wireless distributed microsensor systems will enable the reliable monitoring of a variety of environments for both civil and military applications. In this paper, we look at communication protocols, which can have significant impact on the overall energy dissipation of these networks. Based on our findings that the conventional protocols of direct transmission, minimum-transmission-energy, multi-hop routing, and static clustering may not be optimal for sensor networks, we propose LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network. LEACH uses localized coordination to enable scalability and robustness for dynamic networks, and incorporates data fusion into the routing protocol to reduce the amount of information that must be transmitted to the base station. Simulations show the LEACH can achieve as much as a factor of 8 reduction in energy dissipation compared with conventional outing protocols. In addition, LEACH is able to distribute energy dissipation evenly throughout the sensors, doubling the useful system lifetime for the networks we simulated.

12,497 citations

01 Jan 2000
TL;DR: LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network, is proposed.
Abstract: Wireless distributed microsensor systems will enable the reliable monitoring of a variety of environments for both civil and military applications. In this paper, we look at communication protocols, which can have signicant impact on the overall energy dissipation of these networks. Based on our ndings that the conventional protocols of direct transmission, minimum-transmission-energy, multihop routing, and static clustering may not be optimal for sensor networks, we propose LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster base stations (cluster-heads) to evenly distribute the energy load among the sensors in the network. LEACH uses localized coordination to enable scalability and robustness for dynamic networks, and incorporates data fusion into the routing protocol to reduce the amount of information that must be transmitted to the base station. Simulations show that LEACH can achieve as much as a factor of 8 reduction in energy dissipation compared with conventional routing protocols. In addition, LEACH is able to distribute energy dissipation evenly throughout the sensors, doubling the useful system lifetime for the networks we simulated.

11,412 citations


"Wireless sensor networks: a survey" refers methods in this paper

  • ...Low-energy adaptive clustering hierarchy (LEACH): LEACH is a clustering-based protocol that minimizes energy dissipation in sensor networks [34]....

    [...]

  • ...LEACH [34] Forms clusters to minimize energy dissipation...

    [...]

  • ...Data aggregation can be perceived as a set of automated methods of combining the data that comes from many sensor nodes into a set of meaningful information [34]....

    [...]

Proceedings ArticleDOI
01 Aug 2000
TL;DR: This paper explores and evaluates the use of directed diffusion for a simple remote-surveillance sensor network and its implications for sensing, communication and computation.
Abstract: Advances in processor, memory and radio technology will enable small and cheap nodes capable of sensing, communication and computation. Networks of such nodes can coordinate to perform distributed sensing of environmental phenomena. In this paper, we explore the directed diffusion paradigm for such coordination. Directed diffusion is datacentric in that all communication is for named data. All nodes in a directed diffusion-based network are application-aware. This enables diffusion to achieve energy savings by selecting empirically good paths and by caching and processing data in-network. We explore and evaluate the use of directed diffusion for a simple remote-surveillance sensor network.

6,061 citations


"Wireless sensor networks: a survey" refers background in this paper

  • ...Open research issues for the realization of sensor networks are also discussed....

    [...]

  • ...The required size may be smaller than even a cubic centimeter [69] which is light enough to remain suspended in the air....

    [...]

Proceedings ArticleDOI
01 Aug 2000
TL;DR: The randomized algorithm used by beacons to transmit information, the use of concurrent radio and ultrasonic signals to infer distance, the listener inference algorithms to overcome multipath and interference, and practical beacon configuration and positioning techniques that improve accuracy are described.
Abstract: This paper presents the design, implementation, and evaluation of Cricket, a location-support system for in-building, mobile, location-dependent applications. It allows applications running on mobile and static nodes to learn their physical location by using listeners that hear and analyze information from beacons spread throughout the building. Cricket is the result of several design goals, including user privacy, decentralized administration, network heterogeneity, and low cost. Rather than explicitly tracking user location, Cricket helps devices learn where they are and lets them decide whom to advertise this information to; it does not rely on any centralized management or control and there is no explicit coordination between beacons; it provides information to devices regardless of their type of network connectivity; and each Cricket device is made from off-the-shelf components and costs less than U.S. $10. We describe the randomized algorithm used by beacons to transmit information, the use of concurrent radio and ultrasonic signals to infer distance, the listener inference algorithms to overcome multipath and interference, and practical beacon configuration and positioning techniques that improve accuracy. Our experience with Cricket shows that several location-dependent applications such as in-building active maps and device control can be developed with little effort or manual configuration.

4,123 citations