scispace - formally typeset
Search or ask a question
Journal ArticleDOI

WNT signaling in bone homeostasis and disease: from human mutations to treatments

01 Feb 2013-Nature Medicine (Nature Research)-Vol. 19, Iss: 2, pp 179-192
TL;DR: Current understanding of the mechanisms by which WNT signalng regulates bone homeostasis is reviewed, finding the pathway is now the target for therapeutic intervention to restore bone strength in millions of patients at risk for fracture.
Abstract: Low bone mass and strength lead to fragility fractures, for example, in elderly individuals affected by osteoporosis or children with osteogenesis imperfecta. A decade ago, rare human mutations affecting bone negatively (osteoporosis-pseudoglioma syndrome) or positively (high-bone mass phenotype, sclerosteosis and Van Buchem disease) have been identified and found to all reside in components of the canonical WNT signaling machinery. Mouse genetics confirmed the importance of canonical Wnt signaling in the regulation of bone homeostasis, with activation of the pathway leading to increased, and inhibition leading to decreased, bone mass and strength. The importance of WNT signaling for bone has also been highlighted since then in the general population in numerous genome-wide association studies. The pathway is now the target for therapeutic intervention to restore bone strength in millions of patients at risk for fracture. This paper reviews our current understanding of the mechanisms by which WNT signalng regulates bone homeostasis.
Citations
More filters
Journal ArticleDOI
01 Jun 2017-Cell
TL;DR: The core Wnt/β-catenin signaling pathway is described, how it controls stem cells, and contributes to disease, and strategies for Wnt-based therapies are discussed.

2,663 citations


Cites background from "WNT signaling in bone homeostasis a..."

  • ...The best-known disorders are mutations in the SOST and LRP6 genes causing sclerosteosis and hereditary osteoporosis (Baron and Kneissel, 2013)....

    [...]

Journal ArticleDOI
01 Mar 2017-Oncogene
TL;DR: Current insights into novel components of Wnt pathways are reviewed and how Wnt signaling affects maintenance of cancer stem cells, metastasis and immune control are described.
Abstract: Wnt signaling is one of the key cascades regulating development and stemness, and has also been tightly associated with cancer. The role of Wnt signaling in carcinogenesis has most prominently been described for colorectal cancer, but aberrant Wnt signaling is observed in many more cancer entities. Here, we review current insights into novel components of Wnt pathways and describe their impact on cancer development. Furthermore, we highlight expanding functions of Wnt signaling for both solid and liquid tumors. We also describe current findings how Wnt signaling affects maintenance of cancer stem cells, metastasis and immune control. Finally, we provide an overview of current strategies to antagonize Wnt signaling in cancer and challenges that are associated with such approaches.

1,698 citations

Journal ArticleDOI
TL;DR: YAP/TAZ appear at the centerpiece of a signaling nexus by which cells take control of their behavior according to their own shape, spatial location and growth factor context, and are appealing therapeutic targets in cancer and regenerative medicine.
Abstract: The transcriptional regulators YAP and TAZ are the focus of intense interest given their remarkable biological properties in development, tissue homeostasis and cancer. YAP and TAZ activity is key ...

1,250 citations


Cites background from "WNT signaling in bone homeostasis a..."

  • ...For example, in mesenchymal stem cells, Wnt-induced bone differentiation requires nuclear YAP/TAZ (9), while the role of -catenin remains unclear (11)....

    [...]

Journal ArticleDOI
TL;DR: The developmental progression of fracture healing at the tissue, cellular and molecular levels is reviewed and strategies for fracture treatment that have been tested in animal models and in clinical trials or case series are presented.
Abstract: Fractures are the most common large-organ, traumatic injuries to humans. The repair of bone fractures is a postnatal regenerative process that recapitulates many of the ontological events of embryonic skeletal development. Although fracture repair usually restores the damaged skeletal organ to its pre-injury cellular composition, structure and biomechanical function, about 10% of fractures will not heal normally. This article reviews the developmental progression of fracture healing at the tissue, cellular and molecular levels. Innate and adaptive immune processes are discussed as a component of the injury response, as are environmental factors, such as the extent of injury to the bone and surrounding tissue, fixation and the contribution of vascular tissues. We also present strategies for fracture treatment that have been tested in animal models and in clinical trials or case series. The biophysical and biological basis of the molecular actions of various therapeutic approaches, including recombinant human bone morphogenetic proteins and parathyroid hormone therapy, are also discussed.

1,069 citations

Journal ArticleDOI
TL;DR: In postmenopausal women with low bone mass, romosozumab was associated with increased bone mineral density and bone formation and with decreased bone resorption.
Abstract: Background Sclerostin is an osteocyte-derived inhibitor of osteoblast activity. The monoclonal antibody romosozumab binds to sclerostin and increases bone formation. Methods In a phase 2, multicenter, international, randomized, placebo-controlled, parallel-group, eight-group study, we evaluated the efficacy and safety of romosozumab over a 12-month period in 419 postmenopausal women, 55 to 85 years of age, who had low bone mineral density (a T score of −2.0 or less at the lumbar spine, total hip, or femoral neck and −3.5 or more at each of the three sites). Participants were randomly assigned to receive subcutaneous romosozumab monthly (at a dose of 70 mg, 140 mg, or 210 mg) or every 3 months (140 mg or 210 mg), subcutaneous placebo, or an open-label active comparator — oral alendronate (70 mg weekly) or subcutaneous teriparatide (20 μg daily). The primary end point was the percentage change from baseline in bone mineral density at the lumbar spine at 12 months. Secondary end points included percentage ch...

946 citations


Additional excerpts

  • ...Injection-site reaction† 2 (4) 1 (2) 1 (2) 3 (6) 31 (12)...

    [...]

References
More filters
Journal ArticleDOI
30 Oct 1980-Nature
TL;DR: The phenotypes of the mutant embryos indicate that the process of segmentation involves at least three levels of spatial organization: the entire egg as developmental unit, a repeat unit with the length of two segments, and the individual segment.
Abstract: In systematic searches for embryonic lethal mutants of Drosophila melanogaster we have identified 15 loci which when mutated alter the segmental pattern of the larva. These loci probably represent the majority of such genes in Drosophila. The phenotypes of the mutant embryos indicate that the process of segmentation involves at least three levels of spatial organization: the entire egg as developmental unit, a repeat unit with the length of two segments, and the individual segment.

4,170 citations

Journal ArticleDOI
23 Oct 2003-Nature
TL;DR: Osteoblastic cells are a regulatory component of the haematopoietic stem cell niche in vivo that influences stem cell function through Notch activation.
Abstract: Stem cell fate is influenced by specialized microenvironments that remain poorly defined in mammals. To explore the possibility that haematopoietic stem cells derive regulatory information from bone, accounting for the localization of haematopoiesis in bone marrow, we assessed mice that were genetically altered to produce osteoblast-specific, activated PTH/PTHrP receptors (PPRs). Here we show that PPR-stimulated osteoblastic cells that are increased in number produce high levels of the Notch ligand jagged 1 and support an increase in the number of haematopoietic stem cells with evidence of Notch1 activation in vivo. Furthermore, ligand-dependent activation of PPR with parathyroid hormone (PTH) increased the number of osteoblasts in stromal cultures, and augmented ex vivo primitive haematopoietic cell growth that was abrogated by gamma-secretase inhibition of Notch activation. An increase in the number of stem cells was observed in wild-type animals after PTH injection, and survival after bone marrow transplantation was markedly improved. Therefore, osteoblastic cells are a regulatory component of the haematopoietic stem cell niche in vivo that influences stem cell function through Notch activation. Niche constituent cells or signalling pathways provide pharmacological targets with therapeutic potential for stem-cell-based therapies.

3,434 citations

Journal ArticleDOI
TL;DR: Osteocytes compose 90% to 95% of all bone cells in adult bone and are the longest lived bone cell, up to decades within their mineralized environment.
Abstract: The last decade has provided a virtual explosion of data on the molecular biology and function of osteocytes. Far from being the “passive placeholder in bone,” this cell has been found to have numerous functions, such as acting as an orchestrator of bone remodeling through regulation of both osteoclast and osteoblast activity and also functioning as an endocrine cell. The osteocyte is a source of soluble factors not only to target cells on the bone surface but also to target distant organs, such as kidney, muscle, and other tissues. This cell plays a role in both phosphate metabolism and calcium availability and can remodel its perilacunar matrix. Osteocytes compose 90% to 95% of all bone cells in adult bone and are the longest lived bone cell, up to decades within their mineralized environment. As we age, these cells die, leaving behind empty lacunae that frequently micropetrose. In aged bone such as osteonecrotic bone, empty lacunae are associated with reduced remodeling. Inflammatory factors such as tumor necrosis factor and glucocorticoids used to treat inflammatory disease induce osteocyte cell death, but by different mechanisms with potentially different outcomes. Therefore, healthy, viable osteocytes are necessary for proper functionality of bone and other organs. © 2011 American Society for Bone and Mineral Research.

1,883 citations

Journal ArticleDOI
09 Aug 1991-Science
TL;DR: The data suggest that more than one gene on chromosome 5q21 may contribute to colorectal neoplasia, and that mutations of the APC gene can cause both FAP and GS.
Abstract: Previous studies suggested that one or more genes on chromosome 5q21 are responsible for the inheritance of familial adenomatous polyposis (FAP) and Gardner's syndrome (GS), and contribute to tumor development in patients with noninherited forms of colorectal cancer. Two genes on 5q21 that are tightly linked to FAP (MCC and APC) were found to be somatically altered in tumors from sporadic colorectal cancer patients. One of the genes (APC) was also found to be altered by point mutation in the germ line of FAP and GS patients. These data suggest that more than one gene on chromosome 5q21 may contribute to colorectal neoplasia, and that mutations of the APC gene can cause both FAP and GS. The identification of these genes should aid in understanding the pathogenesis of colorectal neoplasia and in the diagnosis and counseling of patients with inherited predispositions to colorectal cancer.

1,882 citations

Related Papers (5)