scispace - formally typeset
Search or ask a question
Journal ArticleDOI

X-chromosome inactivation: counting, choice and initiation

01 Jan 2001-Nature Reviews Genetics (Nature Publishing Group)-Vol. 2, Iss: 1, pp 59-67
TL;DR: In many sexually dimorphic species, a mechanism is required to ensure equivalent levels of gene expression from the sex chromosomes, and in mammals, such dosage compensation is achieved by X-chromosome inactivation, a process that presents a unique medley of biological puzzles.
Abstract: In many sexually dimorphic species, a mechanism is required to ensure equivalent levels of gene expression from the sex chromosomes. In mammals, such dosage compensation is achieved by X-chromosome inactivation, a process that presents a unique medley of biological puzzles: how to silence one but not the other X chromosome in the same nucleus; how to count the number of X's and keep only one active; how to choose which X chromosome is inactivated; and how to establish this silent state rapidly and efficiently during early development. The key to most of these puzzles lies in a unique locus, the X-inactivation centre and a remarkable RNA — Xist — that it encodes.
Citations
More filters
Journal ArticleDOI
TL;DR: Advances in the understanding of the mechanism and role of DNA methylation in biological processes are reviewed, showing that epigenetic mechanisms seem to allow an organism to respond to the environment through changes in gene expression.
Abstract: Cells of a multicellular organism are genetically homogeneous but structurally and functionally heterogeneous owing to the differential expression of genes. Many of these differences in gene expression arise during development and are subsequently retained through mitosis. Stable alterations of this kind are said to be 'epigenetic', because they are heritable in the short term but do not involve mutations of the DNA itself. Research over the past few years has focused on two molecular mechanisms that mediate epigenetic phenomena: DNA methylation and histone modifications. Here, we review advances in the understanding of the mechanism and role of DNA methylation in biological processes. Epigenetic effects by means of DNA methylation have an important role in development but can also arise stochastically as animals age. Identification of proteins that mediate these effects has provided insight into this complex process and diseases that occur when it is perturbed. External influences on epigenetic processes are seen in the effects of diet on long-term diseases such as cancer. Thus, epigenetic mechanisms seem to allow an organism to respond to the environment through changes in gene expression. The extent to which environmental effects can provoke epigenetic responses represents an exciting area of future research.

5,760 citations

Journal ArticleDOI
13 Sep 2002-Science
TL;DR: It is proposed that double-stranded RNA arising from centromeric repeats targets formation and maintenance of heterochromatin through RNAi.
Abstract: Eukaryotic heterochromatin is characterized by a high density of repeats and transposons, as well as by modified histones, and influences both gene expression and chromosome segregation. In the fission yeast Schizosaccharomyces pombe, we deleted the argonaute, dicer, and RNA-dependent RNA polymerase gene homologs, which encode part of the machinery responsible for RNA interference (RNAi). Deletion results in the aberrant accumulation of complementary transcripts from centromeric heterochromatic repeats. This is accompanied by transcriptional de-repression of transgenes integrated at the centromere, loss of histone H3 lysine-9 methylation, and impairment of centromere function. We propose that double-stranded RNA arising from centromeric repeats targets formation and maintenance of heterochromatin through RNAi.

2,142 citations

Journal ArticleDOI
En Li1
TL;DR: The regulation of higher-order chromatin structures by DNA methylation and histone modification is crucial for genome reprogramming during early embryogenesis and gametogenesis, and for tissue-specific gene expression and global gene silencing.
Abstract: The developmental programme of embryogenesis is controlled by both genetic and epigenetic mechanisms. An emerging theme from recent studies is that the regulation of higher-order chromatin structures by DNA methylation and histone modification is crucial for genome reprogramming during early embryogenesis and gametogenesis, and for tissue-specific gene expression and global gene silencing. Disruptions to chromatin modification can lead to the dysregulation of developmental processes, such as X-chromosome inactivation and genomic imprinting, and to various diseases. Understanding the process of epigenetic reprogramming in development is important for studies of cloning and the clinical application of stem-cell therapy.

1,894 citations

Journal ArticleDOI
TL;DR: Non-coding RNAs seem to be particularly abundant in roles that require highly specific nucleic acid recognition without complex catalysis, such as in directing post-transcriptional regulation of gene expression or in guiding RNA modifications.
Abstract: Non-coding RNA (ncRNA) genes produce functional RNA molecules rather than encoding proteins. However, almost all means of gene identification assume that genes encode proteins, so even in the era of complete genome sequences, ncRNA genes have been effectively invisible. Recently, several different systematic screens have identified a surprisingly large number of new ncRNA genes. Non-coding RNAs seem to be particularly abundant in roles that require highly specific nucleic acid recognition without complex catalysis, such as in directing post-transcriptional regulation of gene expression or in guiding RNA modifications.

1,315 citations

Journal ArticleDOI
04 Apr 2003-Science
TL;DR: It is demonstrated that transient recruitment of the Eed-Ezh2 complex to the inactive X chromosome (Xi) occurs during initiation of X inactivation in both extraembryonic and embryonic cells and is accompanied by H3-K27 methylation.
Abstract: The Polycomb group (PcG) protein Eed is implicated in regulation of imprinted X-chromosome inactivation in extraembryonic cells but not of random X inactivation in embryonic cells. The Drosophila homolog of the Eed-Ezh2 PcG protein complex achieves gene silencing through methylation of histone H3 on lysine 27 (H3-K27), which suggests a role for H3-K27 methylation in imprinted X inactivation. Here we demonstrate that transient recruitment of the Eed-Ezh2 complex to the inactive X chromosome (Xi) occurs during initiation of X inactivation in both extraembryonic and embryonic cells and is accompanied by H3-K27 methylation. Recruitment of the complex and methylation on the Xi depend on Xist RNA but are independent of its silencing function. Together, our results suggest a role for Eed-Ezh2-mediated H3-K27 methylation during initiation of both imprinted and random X inactivation and demonstrate that H3-K27 methylation is not sufficient for silencing of the Xi.

1,248 citations

References
More filters
Journal ArticleDOI
TL;DR: This study reports the first disease-causing mutations in RTT and points to abnormal epigenetic regulation as the mechanism underlying the pathogenesis of RTT.
Abstract: Rett syndrome (RTT, MIM 312750) is a progressive neurodevelopmental disorder and one of the most common causes of mental retardation in females, with an incidence of 1 in 10,000-15,000 (ref. 2). Patients with classic RTT appear to develop normally until 6-18 months of age, then gradually lose speech and purposeful hand use, and develop microcephaly, seizures, autism, ataxia, intermittent hyperventilation and stereotypic hand movements. After initial regression, the condition stabilizes and patients usually survive into adulthood. As RTT occurs almost exclusively in females, it has been proposed that RTT is caused by an X-linked dominant mutation with lethality in hemizygous males. Previous exclusion mapping studies using RTT families mapped the locus to Xq28 (refs 6,9,10,11). Using a systematic gene screening approach, we have identified mutations in the gene (MECP2 ) encoding X-linked methyl-CpG-binding protein 2 (MeCP2) as the cause of some cases of RTT. MeCP2 selectively binds CpG dinucleotides in the mammalian genome and mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A (refs 12,13). In 5 of 21 sporadic patients, we found 3 de novo missense mutations in the region encoding the highly conserved methyl-binding domain (MBD) as well as a de novo frameshift and a de novo nonsense mutation, both of which disrupt the transcription repression domain (TRD). In two affected half-sisters of a RTT family, we found segregation of an additional missense mutation not detected in their obligate carrier mother. This suggests that the mother is a germline mosaic for this mutation. Our study reports the first disease-causing mutations in RTT and points to abnormal epigenetic regulation as the mechanism underlying the pathogenesis of RTT.

4,503 citations

Journal ArticleDOI
03 Feb 2000-Nature
TL;DR: It is shown that the paternal genome in the mouse is significantly and actively demethylated within 6–8 hours of fertilization, before the onset of DNA replication, whereas the maternal genome is dem methylated after several cleavage divisions.
Abstract: In mammals, both parental genomes undergo dramatic epigenetic changes after fertilization to form the diploid somatic genome. Here we show that the paternal genome in the mouse is significantly and actively demethylated within 6–8 hours of fertilization, before the onset of DNA replication, whereas the maternal genome is demethylated after several cleavage divisions. This active demethylation of the paternal genome may be associated with epigenetic remodelling of sperm chroma-tin, in order to establish parent-specific developmental programmes during early embryogenesis.

1,332 citations


"X-chromosome inactivation: counting..." refers background in this paper

  • ...In fact, the paternal genome as a whole is markedly different to the maternal genome in its chromatin state, its global methylatio...

    [...]

Journal ArticleDOI
11 Jan 1996-Nature
TL;DR: Evidence for gene targeting of Xist, the proposed candidate for the X inactivation centre, is provided, and its absolute requirement in the process of X chromosome inactivation is provided.
Abstract: The Xist gene has been proposed as a candidate for the X inactivation centre, the master regulatory switch locus that controls X chromosome inactivation So far this hypothesis has been supported solely by indirect evidence Here we describe gene targeting of Xist, and provide evidence for its absolute requirement in the process of X chromosome inactivation

1,219 citations


"X-chromosome inactivation: counting..." refers background in this paper

  • ...Hyperacetylation of this region is substantially reduced in female ES cells carrying a mutated Xic (a partially deleted Xist gene...

    [...]

Journal ArticleDOI
11 Nov 1999-Nature
TL;DR: It is shown that five unrelated ICF patients have mutations in both alleles of the gene that encodes DNA methyltransferase 3B (refs 5, 6), which is the only genetic disorder known to involve constitutive abnormalities of genomic methylation patterns.
Abstract: The recessive autosomal disorder known as ICF syndrome (for immunodeficiency, centromere instability and facial anomalies; Mendelian Inheritance in Man number 242860) is characterized by variable reductions in serum immunoglobulin levels which cause most ICF patients to succumb to infectious diseases before adulthood. Mild facial anomalies include hypertelorism, low-set ears, epicanthal folds and macroglossia. The cytogenetic abnormalities in lymphocytes are exuberant: juxtacentromeric heterochromatin is greatly elongated and thread-like in metaphase chromosomes, which is associated with the formation of complex multiradiate chromosomes. The same juxtacentromeric regions are subject to persistent interphase self-associations and are extruded into nuclear blebs or micronuclei. Abnormalities are largely confined to tracts of classical satellites 2 and 3 at juxtacentromeric regions of chromosomes 1, 9 and 16. Classical satellite DNA is normally heavily methylated at cytosine residues, but in ICF syndrome it is almost completely unmethylated in all tissues. ICF syndrome is the only genetic disorder known to involve constitutive abnormalities of genomic methylation patterns. Here we show that five unrelated ICF patients have mutations in both alleles of the gene that encodes DNA methyltransferase 3B (refs 5, 6). Cytosine methylation is essential for the organization and stabilization of a specific type of heterochromatin, and this methylation appears to be carried out by an enzyme specialized for the purpose.

1,144 citations


Additional excerpts

  • ...gov/htbin-post/Omim/dispmim?242860"> ICF syndrome...

    [...]

Journal ArticleDOI
TL;DR: Tsix RNA is a 40-kb RNA originating 15 kb downstream of Xist and transcribed across the Xist locus and has features suggesting a role in regulating the early steps of X inactivation, but not the silencing step.
Abstract: In mammals, dosage compensation is achieved by X inactivation and is regulated in cis by the X-inactivation centre (Xic) and Xist. The Xic controls X-chromosome counting, choice of X to inactivate and initiation of silencing. Xic action culminates in a change in Xist RNA property from a scarce, unstable RNA to highly expressed Xist RNA that coats the future inactive X. Deleting a 65-kb region downstream of Xist results in constitutive Xist expression and X inactivation, implying the presence of a cis-regulatory element. In this region, we now report the discovery of a gene antisense to Xist. Tsix is a 40-kb RNA originating 15 kb downstream of Xist and transcribed across the Xist locus. Tsix sequence is conserved at the human XIC. Tsix RNA has no conserved ORFs, is seen exclusively in the nucleus and is localized at Xic. Before the onset of X inactivation, Tsix is expressed from both X chromosomes. At the onset of X inactivation, Tsix expression becomes monoallelic, is associated with the future active X and persists until Xist is turned off. Tsix is not found on the inactive X once cells enter the X-inactivation pathway. Tsix has features suggesting a role in regulating the early steps of X inactivation, but not the silencing step.

826 citations


"X-chromosome inactivation: counting..." refers background in this paper

  • ...cgi?l=9383"> Tsix transcript, a non-coding transcript that is synthesized from the strand opposite to Xist and has been hypothesized to regulate the activity of Xist at the onset of X inactivatio...

    [...]