scispace - formally typeset
Search or ask a question
Journal ArticleDOI

X-ray Thomson scattering in high energy density plasmas

01 Dec 2009-Reviews of Modern Physics (American Physical Society)-Vol. 81, Iss: 4, pp 1625-1663
TL;DR: In this article, the authors developed accurate x-ray scattering techniques to measure the physical properties of dense plasmas for applications in high energy density physics, including inertial confinement fusion, material science, or laboratory astrophysics.
Abstract: Accurate x-ray scattering techniques to measure the physical properties of dense plasmas have been developed for applications in high energy density physics. This class of experiments produces short-lived hot dense states of matter with electron densities in the range of solid density and higher where powerful penetrating x-ray sources have become available for probing. Experiments have employed laser-based x-ray sources that provide sufficient photon numbers in narrow bandwidth spectral lines, allowing spectrally resolved x-ray scattering measurements from these plasmas. The backscattering spectrum accesses the noncollective Compton scattering regime which provides accurate diagnostic information on the temperature, density, and ionization state. The forward scattering spectrum has been shown to measure the collective plasmon oscillations. Besides extracting the standard plasma parameters, density and temperature, forward scattering yields new observables such as a direct measure of collisions and quantum effects. Dense matter theory relates scattering spectra with the dielectric function and structure factors that determine the physical properties of matter. Applications to radiation-heated and shock-compressed matter have demonstrated accurate measurements of compression and heating with up to picosecond temporal resolution. The ongoing development of suitable x-ray sources and facilities will enable experiments in a wide range of research areas including inertial confinement fusion,more » radiation hydrodynamics, material science, or laboratory astrophysics.« less
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the Schrodinger-Poisson equations are used to describe collective nonlinear phenomena at nanoscales in a quantum plasmas with degenerate electrons, such as the formation and dynamics of localized electrostatic (ES) and electromagnetic (EM) wave structures.
Abstract: The current understanding of some important nonlinear collective processes in quantum plasmas with degenerate electrons is presented. After reviewing the basic properties of quantum plasmas, model equations (e.g., the quantum hydrodynamic and effective nonlinear Schrodinger-Poisson equations) are presented that describe collective nonlinear phenomena at nanoscales. The effects of the electron degeneracy arise due to Heisenberg’s uncertainty principle and Pauli’s exclusion principle for overlapping electron wave functions that result in tunneling of electrons and the electron degeneracy pressure. Since electrons are Fermions (spin-1/2 quantum particles), there also appears an electron spin current and a spin force acting on electrons due to the Bohr magnetization. The quantum effects produce new aspects of electrostatic (ES) and electromagnetic (EM) waves in a quantum plasma that are summarized in here. Furthermore, nonlinear features of ES ion waves and electron plasma oscillations are discussed, as well as the trapping of intense EM waves in quantum electron-density cavities. Specifically, simulation studies of the coupled nonlinear Schrodinger and Poisson equations reveal the formation and dynamics of localized ES structures at nanoscales in a quantum plasma. The effect of an external magnetic field on the plasma wave spectra and develop quantum magnetohydrodynamic equations are also discussed. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets), as well as in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, nanophotonics and nanoplasmonics, metallic nanostructures, thin metal films, semiconductor quantum wells, and quantum dots, etc.), and in the next generation of intense laser-solid density plasma interaction experiments relevant for fast ignition in inertial confinement fusion schemes.

438 citations


Cites background or result from "X-ray Thomson scattering in high en..."

  • ...Froula et al. (2011) summarizes the measurement techniques using scattering of EM waves in plasmas, and recent experimental results from x-ray scattering experiments in dense plasmas reveal that quantum mechanical effects are indeed important (Glenzer and Redmer, 2009; Glenzer et al., 2007)....

    [...]

  • ...…plasma regimes seems to provide an adequate description for probing some quantum collective interactions in compressed plasmas (Froula et al., 2011; Glenzer and Redmer, 2009; Glenzer et al., 2007; Lee et al., 2009; Neumayer et al., 2010) due to the availability of ultrafast x-ray Thompson…...

    [...]

  • ...…as well as to inertial fusion science involving intense laser-solid density plasma interaction experiments (Andreev, 2000; Froula et al., 2011; Glenzer and Redmer, 2009; Glenzer et al., 2007; Hu and Keitel, 1999; Kritcher et al., 2008; Lee et al., 2009; Lindl, 1995; Malkin et al., 2007;…...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors proposed a method to convert high energy photons to low energy photons (X-ray imaging) or electrical charges (Xray detector) for a wide range of applicatio
Abstract: Radiation detection, using materials to convert high-energy photons to low-energy photons (X-ray imaging) or electrical charges (X-ray detector), has become essential for a wide range of applicatio

289 citations

01 Nov 2004
TL;DR: The Z accelerator at Sandia National Laboratories delivers ∼20MA load currents to create high magnetic fields (>1000T) and high pressures (megabar to gigabar) in a z-pinch configuration, the magnetic pressure supersonically implodes a plasma created from a cylindrical wire array, which at stagnation typically generates a plasma with energy densities of about 10MJ∕cm3 and temperatures >1keV at 0.1% of solid density as mentioned in this paper.
Abstract: The Z accelerator [R. B. Spielman, W. A. Stygar, J. F. Seamen et al., Proceedings of the 11th International Pulsed Power Conference, Baltimore, MD, 1997, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), Vol. 1, p. 709] at Sandia National Laboratories delivers ∼20MA load currents to create high magnetic fields (>1000T) and high pressures (megabar to gigabar). In a z-pinch configuration, the magnetic pressure (the Lorentz force) supersonically implodes a plasma created from a cylindrical wire array, which at stagnation typically generates a plasma with energy densities of about 10MJ∕cm3 and temperatures >1keV at 0.1% of solid density. These plasmas produce x-ray energies approaching 2MJ at powers >200TW for inertial confinement fusion (ICF) and high energy density physics (HEDP) experiments. In an alternative configuration, the large magnetic pressure directly drives isentropic compression experiments to pressures >3Mbar and accelerates flyer plates to >30km∕s for equation of state ...

263 citations

Journal ArticleDOI
TL;DR: In this article, an X-ray laser was used to observe the transition from plasmas and condensed matter to warm dense matter (WDM) in planetary interiors, and the transition to WDM was observed by using a WDM detector.
Abstract: Warm dense matter (WDM), which falls in the category between plasmas and condensed matter, is expected to exist in planetary interiors. Now, researchers use an X-ray laser to observe the transition to WDM.

240 citations

Journal ArticleDOI
TL;DR: In this article, a review of light sources from relativistic electrons produced by laser-wakefield accelerators is presented, and their potential applications are identified in a broad range of fields: medical and biological applications, military, defense and industrial applications.
Abstract: Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons in the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. We first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.

231 citations


Cites methods from "X-ray Thomson scattering in high en..."

  • ...X-ray Thomson scattering is a widely used technique in HED experiments to measure the temperature, density and ionization states of a plasma [289, 284]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the Hartree and Hartree-Fock equations are applied to a uniform electron gas, where the exchange and correlation portions of the chemical potential of the gas are used as additional effective potentials.
Abstract: From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system of interacting electrons are developed. These methods are exact for systems of slowly varying or high density. For the ground state, they lead to self-consistent equations analogous to the Hartree and Hartree-Fock equations, respectively. In these equations the exchange and correlation portions of the chemical potential of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective potential differs from that due to Slater by a factor of $\frac{2}{3}$.) Electronic systems at finite temperatures and in magnetic fields are also treated by similar methods. An appendix deals with a further correction for systems with short-wavelength density oscillations.

47,477 citations

Journal ArticleDOI
TL;DR: In this article, the atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction.

5,470 citations

Journal ArticleDOI
R Kubo1
TL;DR: In this article, the linear response of a given system to an external perturbation is expressed in terms of fluctuation properties of the system in thermal equilibrium, which may be represented by a stochastic equation describing the fluctuation, which is a generalization of the familiar Langevin equation in the classical theory of Brownian motion.
Abstract: The linear response theory has given a general proof of the fluctuation-dissipation theorem which states that the linear response of a given system to an external perturbation is expressed in terms of fluctuation properties of the system in thermal equilibrium. This theorem may be represented by a stochastic equation describing the fluctuation, which is a generalization of the familiar Langevin equation in the classical theory of Brownian motion. In this generalized equation the friction force becomes retarded or frequency-dependent and the random force is no more white. They are related to each other by a generalized Nyquist theorem which is in fact another expression of the fluctuation-dissipation theorem. This point of view can be applied to a wide class of irreversible process including collective modes in many-particle systems as has already been shown by Mori. As an illustrative example, the density response problem is briefly discussed.

4,096 citations

Journal ArticleDOI
TL;DR: In this paper, the amplification and subsequent recompression of optical chirped pulses were demonstrated using a system which produces 1.06 μm laser pulses with pulse widths of 2 ps and energies at the millijoule level.

3,961 citations

Journal ArticleDOI
T. H. Maiman1
06 Aug 1960-Nature
TL;DR: Schawlow and Townes as discussed by the authors proposed a technique for the generation of very monochromatic radiation in the infra-red optical region of the spectrum using an alkali vapour as the active medium.
Abstract: Schawlow and Townes1 have proposed a technique for the generation of very monochromatic radiation in the infra-red optical region of the spectrum using an alkali vapour as the active medium. Javan2 and Sanders3 have discussed proposals involving electron-excited gaseous systems. In this laboratory an optical pumping technique has been successfully applied to a fluorescent solid resulting in the attainment of negative temperatures and stimulated optical emission at a wave-length of 6943 A. ; the active material used was ruby (chromium in corundum). After demonstration in 1954 of the 'maser' principle (microwave amplification by stimulated emission of radiation), systems were sought in which the effect occurred in the infrared and visible spectrum. This goal was reached in 1960 when Theodore Maiman achieved optical laser action in ruby.

3,893 citations

Related Papers (5)