scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Xen and the art of virtualization

19 Oct 2003-Vol. 37, Iss: 5, pp 164-177
TL;DR: Xen, an x86 virtual machine monitor which allows multiple commodity operating systems to share conventional hardware in a safe and resource managed fashion, but without sacrificing either performance or functionality, considerably outperform competing commercial and freely available solutions.
Abstract: Numerous systems have been designed which use virtualization to subdivide the ample resources of a modern computer. Some require specialized hardware, or cannot support commodity operating systems. Some target 100% binary compatibility at the expense of performance. Others sacrifice security or functionality for speed. Few offer resource isolation or performance guarantees; most provide only best-effort provisioning, risking denial of service.This paper presents Xen, an x86 virtual machine monitor which allows multiple commodity operating systems to share conventional hardware in a safe and resource managed fashion, but without sacrificing either performance or functionality. This is achieved by providing an idealized virtual machine abstraction to which operating systems such as Linux, BSD and Windows XP, can be ported with minimal effort.Our design is targeted at hosting up to 100 virtual machine instances simultaneously on a modern server. The virtualization approach taken by Xen is extremely efficient: we allow operating systems such as Linux and Windows XP to be hosted simultaneously for a negligible performance overhead --- at most a few percent compared with the unvirtualized case. We considerably outperform competing commercial and freely available solutions in a range of microbenchmarks and system-wide tests.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This paper defines Cloud computing and provides the architecture for creating Clouds with market-oriented resource allocation by leveraging technologies such as Virtual Machines (VMs), and provides insights on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain Service Level Agreement (SLA) oriented resource allocation.

5,850 citations

Proceedings ArticleDOI
02 May 2005
TL;DR: The design options for migrating OSes running services with liveness constraints are considered, the concept of writable working set is introduced, and the design, implementation and evaluation of high-performance OS migration built on top of the Xen VMM are presented.
Abstract: Migrating operating system instances across distinct physical hosts is a useful tool for administrators of data centers and clusters: It allows a clean separation between hard-ware and software, and facilitates fault management, load balancing, and low-level system maintenance.By carrying out the majority of migration while OSes continue to run, we achieve impressive performance with minimal service downtimes; we demonstrate the migration of entire OS instances on a commodity cluster, recording service downtimes as low as 60ms. We show that that our performance is sufficient to make live migration a practical tool even for servers running interactive loads.In this paper we consider the design options for migrating OSes running services with liveness constraints, focusing on data center and cluster environments. We introduce and analyze the concept of writable working set, and present the design, implementation and evaluation of high-performance OS migration built on top of the Xen VMM.

3,186 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management is provided in this paper, where a set of issues, challenges, and future research directions for MEC are discussed.
Abstract: Driven by the visions of Internet of Things and 5G communications, recent years have seen a paradigm shift in mobile computing, from the centralized mobile cloud computing toward mobile edge computing (MEC). The main feature of MEC is to push mobile computing, network control and storage to the network edges (e.g., base stations and access points) so as to enable computation-intensive and latency-critical applications at the resource-limited mobile devices. MEC promises dramatic reduction in latency and mobile energy consumption, tackling the key challenges for materializing 5G vision. The promised gains of MEC have motivated extensive efforts in both academia and industry on developing the technology. A main thrust of MEC research is to seamlessly merge the two disciplines of wireless communications and mobile computing, resulting in a wide-range of new designs ranging from techniques for computation offloading to network architectures. This paper provides a comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management. We also discuss a set of issues, challenges, and future research directions for MEC research, including MEC system deployment, cache-enabled MEC, mobility management for MEC, green MEC, as well as privacy-aware MEC. Advancements in these directions will facilitate the transformation of MEC from theory to practice. Finally, we introduce recent standardization efforts on MEC as well as some typical MEC application scenarios.

2,992 citations

Journal ArticleDOI
TL;DR: An architectural framework and principles for energy-efficient Cloud computing are defined and the proposed energy-aware allocation heuristics provision data center resources to client applications in a way that improves energy efficiency of the data center, while delivering the negotiated Quality of Service (QoS).

2,511 citations

Posted Content
TL;DR: A comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management and recent standardization efforts on MEC are introduced.
Abstract: Driven by the visions of Internet of Things and 5G communications, recent years have seen a paradigm shift in mobile computing, from the centralized Mobile Cloud Computing towards Mobile Edge Computing (MEC). The main feature of MEC is to push mobile computing, network control and storage to the network edges (e.g., base stations and access points) so as to enable computation-intensive and latency-critical applications at the resource-limited mobile devices. MEC promises dramatic reduction in latency and mobile energy consumption, tackling the key challenges for materializing 5G vision. The promised gains of MEC have motivated extensive efforts in both academia and industry on developing the technology. A main thrust of MEC research is to seamlessly merge the two disciplines of wireless communications and mobile computing, resulting in a wide-range of new designs ranging from techniques for computation offloading to network architectures. This paper provides a comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management. We also present a research outlook consisting of a set of promising directions for MEC research, including MEC system deployment, cache-enabled MEC, mobility management for MEC, green MEC, as well as privacy-aware MEC. Advancements in these directions will facilitate the transformation of MEC from theory to practice. Finally, we introduce recent standardization efforts on MEC as well as some typical MEC application scenarios.

2,289 citations

References
More filters
Proceedings ArticleDOI
01 Jan 1997
TL;DR: It is shown in this paper how proof-carrying code might be used to develop safe assembly-language extensions of ML programs and the adequacy of concrete representations for the safety policy, the safety proofs, and the proof validation is proved.
Abstract: This paper describes proof-carrying code (PCC), a mechanism by which a host system can determine with certainty that it is safe to execute a program supplied (possibly in binary form) by an untrusted source. For this to be possible, the untrusted code producer must supply with the code a safety proof that attests to the code's adherence to a previously defined safety policy. The host can then easily and quickly validate the proof without using cryptography and without consulting any external agents.In order to gain preliminary experience with PCC, we have performed several case studies. We show in this paper how proof-carrying code might be used to develop safe assembly-language extensions of ML programs. In the context of this case study, we present and prove the adequacy of concrete representations for the safety policy, the safety proofs, and the proof validation. Finally, we briefly discuss how we use proof-carrying code to develop network packet filters that are faster than similar filters developed using other techniques and are formally guaranteed to be safe with respect to a given operating system safety policy.

1,799 citations

Journal ArticleDOI
Carl A. Waldspurger1
09 Dec 2002
TL;DR: Several novel ESX Server mechanisms and policies for managing memory are introduced, including a ballooning technique that reclaims the pages considered least valuable by the operating system running in a virtual machine, and an idle memory tax that achieves efficient memory utilization.
Abstract: VMware ESX Server is a thin software layer designed to multiplex hardware resources efficiently among virtual machines running unmodified commodity operating systems. This paper introduces several novel ESX Server mechanisms and policies for managing memory. A ballooning technique reclaims the pages considered least valuable by the operating system running in a virtual machine. An idle memory tax achieves efficient memory utilization while maintaining performance isolation guarantees. Content-based page sharing and hot I/O page remapping exploit transparent page remapping to eliminate redundancy and reduce copying overheads. These techniques are combined to efficiently support virtual machine workloads that overcommit memory.

1,528 citations


"Xen and the art of virtualization" refers methods in this paper

  • ...In this paper we present Xen, a high performance resource-managed virtual machine monitor (VMM) which enables applications such as server consolidation [41, 8], co-located hosting facilities [14], distributed web services [42], secure computing platforms [12, 16] and application mobility [25, 36]....

    [...]

  • ...XenoLinux implements a balloon driver [41], which adjusts a domain’s memory usage by passing memory pages back and forth between Xen and XenoLinux’s page allocator....

    [...]

Proceedings ArticleDOI
30 May 1995
TL;DR: I-TCP is described, which is an indirect transport layer protocol for mobile hosts, which utilizes the resources of Mobility Support Routers (MSRs) to provide transport layer communication between mobile hosts and hosts on the fixed network.
Abstract: IP based solutions to accommodate mobile hosts within existing internetworks do not address the distinctive features of wireless mobile computing. IP-based transport protocols thus suffer from poor performance when a mobile host communicates with a host on the fixed network. This is caused by frequent disruptions in network layer connectivity due to i) mobility and ii) unreliable nature of the wireless link. We describe I-TCP, which is an indirect transport layer protocol for mobile hosts. I-TCP utilizes the resources of Mobility Support Routers (MSRs) to provide transport layer communication between mobile hosts and hosts on the fixed network. With I-TCP, the problems related to mobility and unreliability of wireless link are handled entirely within the wireless link; the TCP/IP software on the fixed hosts is not modified. Using I-TCP on our testbed, the throughput between a fixed host and a mobile host improved substantially in comparison to regular TCP.

1,255 citations


"Xen and the art of virtualization" refers background in this paper

  • ...Xen provides an excellent platform for deploying a wide variety of network-centric services, such as local mirroring of dynamic web content, media stream transcoding and distribution, multiplayer game and virtual reality servers, and ‘smart proxies’ [2] to provide a less ephemeral network presence for transiently-connected devices....

    [...]

Journal ArticleDOI
09 Dec 2002
TL;DR: ReVirt removes the dependency on the target operating system by moving it into a virtual machine and logging below the virtual machine, and enables it to provide arbitrarily detailed observations about what transpired on the system, even in the presence of non-deterministic attacks and executions.
Abstract: Current system loggers have two problems: they depend on the integrity of the operating system being logged, and they do not save sufficient information to replay and analyze attacks that include any non-deterministic events. ReVirt removes the dependency on the target operating system by moving it into a virtual machine and logging below the virtual machine. This allows ReVirt to replay the system's execution before, during, and after an intruder compromises the system, even if the intruder replaces the target operating system. ReVirt logs enough information to replay a long-term execution of the virtual machine instruction-by-instruction. This enables it to provide arbitrarily detailed observations about what transpired on the system, even in the presence of non-deterministic attacks and executions. ReVirt adds reasonable time and space overhead. Overheads due to virtualization are imperceptible for interactive use and CPU-bound workloads, and 13--58% for kernel-intensive workloads. Logging adds 0--8% overhead, and logging traffic for our workloads can be stored on a single disk for several months.

1,148 citations


"Xen and the art of virtualization" refers methods in this paper

  • ...In this paper we present Xen, a high performance resource-managed virtual machine monitor (VMM) which enables applications such as server consolidation [41, 8], co-located hosting facilities [14], distributed web services [42], secure computing platforms [12, 16] and application mobility [25, 36]....

    [...]

Proceedings ArticleDOI
03 Dec 1995
TL;DR: This paper describes the motivation, architecture and performance of SPIN, an extensible operating system that provides an extension infrastructure together with a core set of extensible services that allow applications to safely change the operating system's interface and implementation.
Abstract: This paper describes the motivation, architecture and performance of SPIN, an extensible operating system. SPIN provides an extension infrastructure, together with a core set of extensible services, that allow applications to safely change the operating system's interface and implementation. Extensions allow an application to specialize the underlying operating system in order to achieve a particular level of performance and functionality. SPIN uses language and link-time mechanisms to inexpensively export fine-grained interfaces to operating system services. Extensions are written in a type safe language, and are dynamically linked into the operating system kernel. This approach offers extensions rapid access to system services, while protecting the operating system code executing within the kernel address space. SPIN and its extensions are written in Modula-3 and run on DEC Alpha workstations.

1,054 citations