scispace - formally typeset
Open AccessBook ChapterDOI

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks

Reads0
Chats0
TLDR
The Binary-Weight-Network version of AlexNet is compared with recent network binarization methods, BinaryConnect and BinaryNets, and outperform these methods by large margins on ImageNet, more than \(16\,\%\) in top-1 accuracy.
Abstract
We propose two efficient approximations to standard convolutional neural networks: Binary-Weight-Networks and XNOR-Networks. In Binary-Weight-Networks, the filters are approximated with binary values resulting in 32\(\times \) memory saving. In XNOR-Networks, both the filters and the input to convolutional layers are binary. XNOR-Networks approximate convolutions using primarily binary operations. This results in 58\(\times \) faster convolutional operations (in terms of number of the high precision operations) and 32\(\times \) memory savings. XNOR-Nets offer the possibility of running state-of-the-art networks on CPUs (rather than GPUs) in real-time. Our binary networks are simple, accurate, efficient, and work on challenging visual tasks. We evaluate our approach on the ImageNet classification task. The classification accuracy with a Binary-Weight-Network version of AlexNet is the same as the full-precision AlexNet. We compare our method with recent network binarization methods, BinaryConnect and BinaryNets, and outperform these methods by large margins on ImageNet, more than \(16\,\%\) in top-1 accuracy. Our code is available at: http://allenai.org/plato/xnornet.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

TL;DR: ShuffleNet as discussed by the authors utilizes two new operations, pointwise group convolution and channel shuffle, to greatly reduce computation cost while maintaining accuracy, and achieves an actual speedup over AlexNet while maintaining comparable accuracy.
Posted Content

Searching for MobileNetV3.

TL;DR: This paper starts the exploration of how automated search algorithms and network design can work together to harness complementary approaches improving the overall state of the art of MobileNets.
Proceedings ArticleDOI

Searching for MobileNetV3

TL;DR: MobileNetV3 as mentioned in this paper is the next generation of MobileNets based on a combination of complementary search techniques as well as a novel architecture design and achieves state-of-the-art results for mobile classification, detection and segmentation.
Journal ArticleDOI

Efficient Processing of Deep Neural Networks: A Tutorial and Survey

TL;DR: In this paper, the authors provide a comprehensive tutorial and survey about the recent advances toward the goal of enabling efficient processing of DNNs, and discuss various hardware platforms and architectures that support DNN, and highlight key trends in reducing the computation cost of deep neural networks either solely via hardware design changes or via joint hardware and DNN algorithm changes.
Journal ArticleDOI

Deep convolutional neural networks for image classification: A comprehensive review

TL;DR: This review, which focuses on the application of CNNs to image classification tasks, covers their development, from their predecessors up to recent state-of-the-art deep learning systems.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Proceedings ArticleDOI

Fully convolutional networks for semantic segmentation

TL;DR: The key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning.