scispace - formally typeset
Search or ask a question
Journal ArticleDOI

XPS Studies of Oxygen Evolution on Ru and RuO2 Anodes

01 Apr 1983-Journal of The Electrochemical Society (The Electrochemical Society)-Vol. 130, Iss: 4, pp 825-829
TL;DR: In this article, a reaction path for evolution and corrosion on Ru and anodes is proposed, where the surface of anodes prepared by thermal decomposition of contains some, which is stable during anodic polarization.
Abstract: Anodic oxidation of Ru and electrodes in has been investigated using x‐ray photoelectron spectroscopy. During evolution on Ru a highly defective hydrated oxide film is formed as a result of corrosion. At a temperature of 310°C in vacuum this film decomposes to metallic ruthenium. The surface of anodes prepared by thermal decomposition of contains some , which is stable during anodic polarization. A reaction path for evolution and corrosion on Ru and anodes is proposed.
Citations
More filters
Journal ArticleDOI
TL;DR: This review acquaints some materials for performing OER activity, in which the metal oxide materials build the basis of OER mechanism while non-oxide materials exhibit greatly promising performance toward overall water-splitting.
Abstract: There is still an ongoing effort to search for sustainable, clean and highly efficient energy generation to satisfy the energy needs of modern society. Among various advanced technologies, electrocatalysis for the oxygen evolution reaction (OER) plays a key role and numerous new electrocatalysts have been developed to improve the efficiency of gas evolution. Along the way, enormous effort has been devoted to finding high-performance electrocatalysts, which has also stimulated the invention of new techniques to investigate the properties of materials or the fundamental mechanism of the OER. This accumulated knowledge not only establishes the foundation of the mechanism of the OER, but also points out the important criteria for a good electrocatalyst based on a variety of studies. Even though it may be difficult to include all cases, the aim of this review is to inspect the current progress and offer a comprehensive insight toward the OER. This review begins with examining the theoretical principles of electrode kinetics and some measurement criteria for achieving a fair evaluation among the catalysts. The second part of this review acquaints some materials for performing OER activity, in which the metal oxide materials build the basis of OER mechanism while non-oxide materials exhibit greatly promising performance toward overall water-splitting. Attention of this review is also paid to in situ approaches to electrocatalytic behavior during OER, and this information is crucial and can provide efficient strategies to design perfect electrocatalysts for OER. Finally, the OER mechanism from the perspective of both recent experimental and theoretical investigations is discussed, as well as probable strategies for improving OER performance with regards to future developments.

3,976 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the state-of-the-art for PEM electrolysis technology is presented, which provides an insightful overview of the research that is already done and the challenges that still exist.
Abstract: Hydrogen is often considered the best means by which to store energy coming from renewable and intermittent power sources. With the growing capacity of localized renewable energy sources surpassing the gigawatt range, a storage system of equal magnitude is required. PEM electrolysis provides a sustainable solution for the production of hydrogen, and is well suited to couple with energy sources such as wind and solar. However, due to low demand in electrolytic hydrogen in the last century, little research has been done on PEM electrolysis with many challenges still unexplored. The ever increasing desire for green energy has rekindled the interest on PEM electrolysis, thus the compilation and recovery of past research and developments is important and necessary. In this review, PEM water electrolysis is comprehensively highlighted and discussed. The challenges new and old related to electrocatalysts, solid electrolyte, current collectors, separator plates and modeling efforts will also be addressed. The main message is to clearly set the state-of-the-art for the PEM electrolysis technology, be insightful of the research that is already done and the challenges that still exist. This information will provide several future research directions and a road map in order to aid scientists in establishing PEM electrolysis as a commercially viable hydrogen production solution.

3,208 citations


Cites background from "XPS Studies of Oxygen Evolution on ..."

  • ...Reprinted from ref [62] with permission from the ECS....

    [...]

Journal ArticleDOI
TL;DR: In this article, the hydrogen (H2) and oxygen (O2) fuel cell is the one with zero carbon emission and water as the only byproduct, which is essential to ensure higher life cycle and less decay in cell efficiency.
Abstract: Increasing demand for finding eco-friendly and everlasting energy sources is now totally depending on fuel cell technology. Though it is an eco-friendly way of producing energy for the urgent requirements, it needs to be improved to make it cheaper and more eco-friendly. Although there are several types of fuel cells, the hydrogen (H2) and oxygen (O2) fuel cell is the one with zero carbon emission and water as the only byproduct. However, supplying fuels in the purest form (at least the H2) is essential to ensure higher life cycles and less decay in cell efficiency. The current large-scale H2 production is largely dependent on steam reforming of fossil fuels, which generates CO2 along with H2 and the source of which is going to be depleted. As an alternate, electrolysis of water has been given greater attention than the steam reforming. The reasons are as follows: the very high purity of the H2 produced, the abundant source, no need for high-temperature, high-pressure reactors, and so on. In earlier days,...

1,757 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized previous and most recent theoretical predictions and experimental outcomes in the field of oxide-based catalysts for the oxygen evolution reaction (OER), both operating in acidic and alkaline environments.
Abstract: The growing need to store large amounts of energy produced from renewable sources has recently directed substantial R&D efforts towards water electrolysis technologies. Although the description of the electrochemical reaction of water electrolysis dates back to the late 18th century, improvements in terms of efficiency and stability are foreseen for a widespread market penetration of water electrolysers. Particular advances are required for the electrode materials catalysing the oxygen evolution reaction (OER) at the anode side, which has slow kinetics and thus is one of the major sources of the cell efficiency loss. In recent years, high-level theoretical tools and computational studies have led to significant progress in the atomic-level understanding of the OER and electrocatalyst behaviour. In parallel, several experimental studies have explored new catalytic materials with advanced properties and kinetics on a technical relevant level. This contribution summarises previous and the most recent theoretical predictions and experimental outcomes in the field of oxide-based catalysts for the OER, both operating in acidic and alkaline environments.

976 citations