scispace - formally typeset
Open accessJournal ArticleDOI: 10.3390/APP11052172

Yttrium Oxide Nanoparticle Synthesis: An Overview of Methods of Preparation and Biomedical Applications

02 Mar 2021-Applied Sciences (MDPI AG)-Vol. 11, Iss: 5, pp 2172
Abstract: Metal oxide nanoparticles demonstrate uniqueness in various technical applications due to their suitable physiochemical properties. In particular, yttrium oxide (Y2O3) nanoparticle is familiar for technical applications because of its higher dielectric constant and thermal stability. It is widely used as a host material for a variety of rare-earth dopants, biological imaging, and photodynamic therapies. Y2O3 has also been used as a polarizer, phosphor, laser host material, and in the optoelectronic fields for cancer therapy, biosensor, and bioimaging. Yttrium oxide nanoparticles have attractive antibacterial and antioxidant properties. This review focuses on the promising applications of Y2O3, its drawbacks, and its modifications. The synthetic methods of nanoparticles, such as sol-gel, emulsion, chemical methods, solid-state reactions, combustion, colloid reaction techniques, and hydrothermal processing, are recapitulated. Herein, we also discuss the advantages and disadvantages of Y2O3 NPs based biosensors that function through various detection modes including colorimetric, electrochemistry, and chemo luminescent regarding the detection of small organic chemicals, metal ions, and biomarkers.

... read more


13 results found

Open accessJournal Article
Abstract: We report the first demonstration of a multicolor high-spatial-resolution imaging technique for observation of biological cells using cathodoluminescence from nanophosphors. Three kinds of rare-earth-doped nanophosphors were injected into J744A.1 macrophages, and the spatial distribution of nanophosphors was visualized by using a scanning electron microscope cathodoluminescence (SEM-CL) system. The spectral bandwidth of the phosphors was narrow enough to distinguish the types of the phosphors. CL images of the nanophosphors on Si substrates were obtained with high resolution comparable to that of SEM images. These nanophosphors will be candidates to image more than two kinds of biological molecules at high resolution.

... read more

33 Citations

Open accessJournal ArticleDOI: 10.3390/APP11083626
17 Apr 2021-Applied Sciences
Abstract: The healing power of light has attracted interest for thousands of years. Scientific discoveries and technological advancements in the field have eventually led to the emergence of photodynamic therapy, which soon became a promising approach in treating a broad range of diseases. Based on the interaction between light, molecular oxygen, and various photosensitizers, photodynamic therapy represents a non-invasive, non-toxic, repeatable procedure for tumor treatment, wound healing, and pathogens inactivation. However, classic photosensitizing compounds impose limitations on their clinical applications. Aiming to overcome these drawbacks, nanotechnology came as a solution for improving targeting efficiency, release control, and solubility of traditional photosensitizers. This paper proposes a comprehensive path, starting with the photodynamic therapy mechanism, evolution over the years, integration of nanotechnology, and ending with a detailed review of the most important applications of this therapeutic approach.

... read more

15 Citations

Journal ArticleDOI: 10.1021/ACSAMI.1C04597
Abstract: As the use of pesticides in agriculture is increasing at an alarming rate, food contamination by pesticide residues is becoming a huge global problem. It is essential to develop a sensitive and user-friendly sensor device to quantify trace levels of pesticide and herbicide residues in food samples. Herein, we report an electrocatalyst made up of yttrium iron garnet (Y3Fe5O12; YIG) and graphitic carbon nitride (GCN) to attain picomolar-level detection sensitivity for mesotrione (MTO), which is a widely used herbicide in agriculture. First, YIG was prepared by a hydrothermal route; then, it was loaded on GCN sheets via a calcination method. The surface structures, composition, crystallinity, and interfacial and electrocatalytic properties of the YIG and YIG/GCN were analyzed. As the YIG/GCN displayed better surface and catalytic properties than YIG, YIG/GCN was modified on a screen-printed carbon electrode to fabricate a sensor for MTO. The YIG/GCN-modified electrode displayed a detection limit of 950 pM for MTO. The method was demonstrated in (spiked) fruits and vegetables. Then, the modified electrode was integrated with a miniaturized potentiostat called KAUSTat, which can be operated wirelessly by a smartphone. A first smartphone-based portable sensor was demonstrated for MTO that is suitable for use in nonlaboratory settings.

... read more

Topics: Yttrium iron garnet (53%), Electrocatalyst (50%)

6 Citations

Open accessJournal ArticleDOI: 10.3390/ANTIBIOTICS10070884
Abstract: The use of metal oxide nanoparticles is one of the promising ways for overcoming antibiotic resistance in bacteria. Iron oxide nanoparticles (IONPs) have found wide applications in different fields of biomedicine. Several studies have suggested using the antimicrobial potential of IONPs. Iron is one of the key microelements and plays an important role in the function of living systems of different hierarchies. Iron abundance and its physiological functions bring into question the ability of iron compounds at the same concentrations, on the one hand, to inhibit the microbial growth and, on the other hand, to positively affect mammalian cells. At present, multiple studies have been published that show the antimicrobial effect of IONPs against Gram-negative and Gram-positive bacteria and fungi. Several studies have established that IONPs have a low toxicity to eukaryotic cells. It gives hope that IONPs can be considered potential antimicrobial agents of the new generation that combine antimicrobial action and high biocompatibility with the human body. This review is intended to inform readers about the available data on the antimicrobial properties of IONPs, a range of susceptible bacteria, mechanisms of the antibacterial action, dependence of the antibacterial action of IONPs on the method for synthesis, and the biocompatibility of IONPs with eukaryotic cells and tissues.

... read more

4 Citations

Journal ArticleDOI: 10.1016/J.APSUSC.2021.151356
Jingwen Wang1, Shuilai Qiu1, Liang Cheng1, Weijian Chen1  +7 moreInstitutions (1)
Abstract: Black phosphorus (BP), as a promising star of two-dimensional (2D) van der Waals family, has attracted extensive attention for its characteristic dimension effects, mechanical properties and thermal stability. Herein, we report a facile strategy of integrating aryl diazonium modified few Layer black phosphorus with loading of ultrafine yttrium oxide (BP-NH-Y), for reducing the fire hazard of epoxy resin (EP). The results of cone calorimetry test results manifest that the flame retardancy of EP can significantly improve by adding 2 wt% BP-NH-Y, for instance, the peak heat release rate (pHRR) and the total heat release (THR) is reduced by 47.0% and 48.1%, respectively. Especially, adding the BP-NH-Y nanosheets distinctly inhibite the diffusion of EP pyrolysis products (such as toxic CO, hydrocarbons etc.) during flaming. In particular, epoxy composites with only 1.0 wt% BP-NH-Y were able to achieve UL-94 V-0 rating with an oxygen index of more than 30. This work may have a promising prospect for developing efficient covalent functionalized BP nanosheets to meet the needs of sustainable applications.

... read more

1 Citations


134 results found

Journal ArticleDOI: 10.1002/JBT.10058
Abstract: Increasing evidence in both experimental and clinical studies suggests that oxidative stress plays a major role in the pathogenesis of both types of diabetes mellitus. Free radicals are formed disproportionately in diabetes by glucose oxidation, nonenzymatic glycation of proteins, and the subsequent oxidative degradation of glycated proteins. Abnormally high levels of free radicals and the simultaneous decline of antioxidant defense mechanisms can lead to damage of cellular organelles and enzymes, increased lipid peroxidation, and development of insulin resistance. These consequences of oxidative stress can promote the development of complications of diabetes mellitus. Changes in oxidative stress biomarkers, including superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, glutathione levels, vitamins, lipid peroxidation, nitrite concentration, nonenzymatic glycosylated proteins, and hyperglycemia in diabetes, and their consequences, are discussed in this review. In vivo studies of the effects of various conventional and alternative drugs on these biomarkers are surveyed. There is a need to continue to explore the relationship between free radicals, diabetes, and its complications, and to elucidate the mechanisms by which increased oxidative stress accelerates the development of diabetic complications, in an effort to expand treatment options.

... read more

Topics: Oxidative stress (59%), Glutathione reductase (59%), Glutathione peroxidase (58%) ... read more

2,703 Citations

Open accessJournal ArticleDOI: 10.1186/1477-3155-2-3
O.V. Salata1Institutions (1)
Abstract: Nanomaterials are at the leading edge of the rapidly developing field of nanotechnology. Their unique size-dependent properties make these materials superior and indispensable in many areas of human activity. This brief review tries to summarise the most recent developments in the field of applied nanomaterials, in particular their application in biology and medicine, and discusses their commercialisation prospects.

... read more

1,848 Citations

Open accessJournal ArticleDOI: 10.1186/S12951-018-0392-8
Abstract: Nanomedicine and nano delivery systems are a relatively new but rapidly developing science where materials in the nanoscale range are employed to serve as means of diagnostic tools or to deliver therapeutic agents to specific targeted sites in a controlled manner Nanotechnology offers multiple benefits in treating chronic human diseases by site-specific, and target-oriented delivery of precise medicines Recently, there are a number of outstanding applications of the nanomedicine (chemotherapeutic agents, biological agents, immunotherapeutic agents etc) in the treatment of various diseases The current review, presents an updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs (eg, natural products) and selective diagnosis through disease marker molecules The opportunities and challenges of nanomedicines in drug delivery from synthetic/natural sources to their clinical applications are also discussed In addition, we have included information regarding the trends and perspectives in nanomedicine area

... read more

Topics: Targeted drug delivery (56%), Nanomedicine (53%)

1,381 Citations

Journal ArticleDOI: 10.1016/J.TCB.2005.09.002
Paul Martin1, S. Joseph Leibovich2Institutions (2)
Abstract: Damage to any tissue triggers a cascade of events that leads to rapid repair of the wound – if the tissue is skin, then repair involves re-epithelialization, formation of granulation tissue and contraction of underlying wound connective tissues. This concerted effort by the wounded cell layers is accompanied by, and might also be partially regulated by, a robust inflammatory response, in which first neutrophils and then macrophages and mast cells emigrate from nearby tissues and from the circulation. Clearly, this inflammatory response is crucial for fighting infection and must have been selected for during the course of evolution so that tissue damage did not inevitably lead to death through septicemia. But, aside from this role, exactly what are the functions of the various leukocyte lineages that are recruited with overlapping time courses to the wound site, and might they do more harm than good? Recent knockout and knockdown studies suggest that depletion of one or more of the inflammatory cell lineages can even enhance healing, and we discuss new views on how regulation of the migration of inflammatory cells to sites of tissue damage might guide therapeutic strategies for modulating the inflammatory response.

... read more

Topics: Wound healing (56%), Granulation tissue (55%), Inflammation (53%)

1,128 Citations

Journal ArticleDOI: 10.1016/S0891-5849(00)00498-6
Abstract: Flavonoids are a family of antioxidants found in fruits and vegetables as well as in popular beverages such as red wine and tea. Although the physiological benefits of flavonoids have been largely attributed to their antioxidant properties in plasma, flavonoids may also protect cells from various insults. Nerve cell death from oxidative stress has been implicated in a variety of pathologies, including stroke, trauma, and diseases such as Alzheimer's and Parkinson's. To determine the potential protective mechanisms of flavonoids in cell death, the mouse hippocampal cell line HT-22, a model system for oxidative stress, was used. In this system, exogenous glutamate inhibits cystine uptake and depletes intracellular glutathione (GSH), leading to the accumulation of reactive oxygen species (ROS) and an increase in Ca(2+) influx, which ultimately causes neuronal death. Many, but not all, flavonoids protect HT-22 cells and rat primary neurons from glutamate toxicity as well as from five other oxidative injuries. Three structural requirements of flavonoids for protection from glutamate are the hydroxylated C3, an unsaturated C ring, and hydrophobicity. We also found three distinct mechanisms of protection. These include increasing intracellular GSH, directly lowering levels of ROS, and preventing the influx of Ca(2+) despite high levels of ROS. These data show that the mechanism of protection from oxidative insults by flavonoids is highly specific for each compound.

... read more

Topics: Oxidative stress (56%), Glutathione (53%), Reactive oxygen species (51%) ... read more

768 Citations

No. of citations received by the Paper in previous years