scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Z-MAC: a hybrid MAC for wireless sensor networks

01 Jun 2008-IEEE ACM Transactions on Networking (IEEE Press)-Vol. 16, Iss: 3, pp 511-524
TL;DR: A hybrid MAC protocol for wireless sensor networks that combines the strengths of TDMA and CSMA while offsetting their weaknesses, ZMAC, which achieves high channel utilization and low latency under low contention and reduces collision among two-hop neighbors at a low cost.
Abstract: This paper presents the design, implementation and performance evaluation of a hybrid MAC protocol, called Z-MAC, for wireless sensor networks that combines the strengths of TDMA and CSMA while offsetting their weaknesses. Like CSMA, Z-MAC achieves high channel utilization and low latency under low contention and like TDMA, achieves high channel utilization under high contention and reduces collision among two-hop neighbors at a low cost. A distinctive feature of Z-MAC is that its performance is robust to synchronization errors, slot assignment failures, and time-varying channel conditions; in the worst case, its performance always falls back to that of CSMA. Z-MAC is implemented in TinyOS.
Citations
More filters
Journal ArticleDOI
01 May 2009
TL;DR: This paper breaks down the energy consumption for the components of a typical sensor node, and discusses the main directions to energy conservation in WSNs, and presents a systematic and comprehensive taxonomy of the energy conservation schemes.
Abstract: In the last years, wireless sensor networks (WSNs) have gained increasing attention from both the research community and actual users. As sensor nodes are generally battery-powered devices, the critical aspects to face concern how to reduce the energy consumption of nodes, so that the network lifetime can be extended to reasonable times. In this paper we first break down the energy consumption for the components of a typical sensor node, and discuss the main directions to energy conservation in WSNs. Then, we present a systematic and comprehensive taxonomy of the energy conservation schemes, which are subsequently discussed in depth. Special attention has been devoted to promising solutions which have not yet obtained a wide attention in the literature, such as techniques for energy efficient data acquisition. Finally we conclude the paper with insights for research directions about energy conservation in WSNs.

2,546 citations

Journal ArticleDOI
TL;DR: This paper thoroughly exposes the prime focus of WSN MAC protocols, design guidelines that inspired these protocols, as well as drawbacks and shortcomings of the existing solutions and how existing and emerging technology will influence future solutions.
Abstract: The wireless medium being inherently broadcast in nature and hence prone to interferences requires highly optimized medium access control (MAC) protocols. This holds particularly true for wireless sensor networks (WSNs) consisting of a large amount of miniaturized battery-powered wireless networked sensors required to operate for years with no human intervention. There has hence been a growing interest on understanding and optimizing WSN MAC protocols in recent years, where the limited and constrained resources have driven research towards primarily reducing energy consumption of MAC functionalities. In this paper, we provide a comprehensive state-of-the-art study in which we thoroughly expose the prime focus of WSN MAC protocols, design guidelines that inspired these protocols, as well as drawbacks and shortcomings of the existing solutions and how existing and emerging technology will influence future solutions. In contrast to previous surveys that focused on classifying MAC protocols according to the technique being used, we provide a thematic taxonomy in which protocols are classified according to the problems dealt with. We also show that a key element in selecting a suitable solution for a particular situation is mainly driven by the statistical properties of the generated traffic.

582 citations

Journal ArticleDOI
TL;DR: The algorithm is implemented in TinyOS and shown to be effective in adapting to local topology changes without incurring global overhead in the scheduling, and the effect of the time-varying nature of wireless links on the conflict-free property of DRAND-assigned time slots is evaluated.
Abstract: This paper presents a distributed implementation of RAND, a randomized time slot scheduling algorithm, called DRAND. DRAND runs in O(delta) time and message complexity where delta is the maximum size of a two-hop neighborhood in a wireless network while message complexity remains O(delta), assuming that message delays can be bounded by an unknown constant. DRAND is the first fully distributed version of RAND. The algorithm is suitable for a wireless network where most nodes do not move, such as wireless mesh networks and wireless sensor networks. We implement the algorithm in TinyOS and demonstrate its performance in a real testbed of Mica2 nodes. The algorithm does not require any time synchronization and is shown to be effective in adapting to local topology changes without incurring global overhead in the scheduling. Because of these features, it can also be used even for other scheduling problems such as frequency or code scheduling (for FDMA or CDMA) or local identifier assignment for wireless networks where time synchronization is not enforced. We further evaluate the effect of the time-varying nature of wireless links on the conflict-free property of DRAND-assigned time slots. This experiment is conducted on a 55-node testbed consisting of the more recent MicaZ sensor nodes.

339 citations

Journal ArticleDOI
TL;DR: A broader view towards the WSN solution is presented by discussing important functions like medium access control, routing, and transport in detail to give some insight into specific requirements and the classification of protocols based on certain factors.
Abstract: Wireless Sensor Networks (WSNs) are applicable in numerous domains, including industrial automation where WSNs may be used for monitoring and control of industrial plants and equipment. However, the requirements in the industrial systems differ from the general WSN requirements. In recent years, standards have been defined by several industrial alliances. These standards are specified as frameworks with modifiable parts that can be defined based on the particular application of WSN. However, limited work has been done on defining industry-specific protocols that could be used as a part of these standards. In this survey, we discuss representative protocols that meet some of the requirements of the industrial applications. Since the industrial applications domain in itself is a vast area, we divide them into classes with similar requirements. We discuss these industrial classes, set of common requirements and various state-of-the-art WSN standards proposed to satisfy these requirements. We then present a broader view towards the WSN solution by discussing important functions like medium access control, routing, and transport in detail to give some insight into specific requirements and the classification of protocols based on certain factors. We list and discuss representative protocols for each of these functions that address requirements defined in the industrial classes. Security function is discussed in brief, mainly in relation to industrial standards. Finally, we identify unsolved challenges that are encountered during design of protocols and standards. In addition some new challenges are introduced and discussed.

329 citations

Journal ArticleDOI
TL;DR: This survey observes that instead of providing deterministic QoS guarantees, majority of the protocols follow a service differentiation approach by classifying the data packets according to their type (or classes) and packets from different classes are treated according totheir requirements by tuning the associated network parameters at the MAC layer.

248 citations

References
More filters
01 Jul 2003
TL;DR: RTP provides end-to-end network transport functions suitable for applications transmitting real-time data over multicast or unicast network services and is augmented by a control protocol (RTCP) to allow monitoring of the data delivery in a manner scalable to large multicast networks.
Abstract: This memorandum describes RTP, the real-time transport protocol. RTP provides end-to-end network transport functions suitable for applications transmitting real-time data, such as audio, video or simulation data, over multicast or unicast network services. RTP does not address resource reservation and does not guarantee quality-of-service for real-time services. The data transport is augmented by a control protocol (RTCP) to allow monitoring of the data delivery in a manner scalable to large multicast networks, and to provide minimal control and identification functionality. RTP and RTCP are designed to be independent of the underlying transport and network layers. The protocol supports the use of RTP-level translators and mixers.

7,183 citations


"Z-MAC: a hybrid MAC for wireless se..." refers methods in this paper

  • ...Z-MAC adopts a technique from RTP/RTCP (real-time transport protocol) [ 18 ]....

    [...]

Posted Content
TL;DR: A quantitative measure called Indiex of FRairness, applicable to any resource sharing or allocation problem, which is independent of the amount of the resource, and boundedness aids intuitive understanding of the fairness index.
Abstract: Fairness is an important performance criterion in all resource allocation schemes, including those in distributed computer systems However, it is often specified only qualitatively The quantitative measures proposed in the literature are either too specific to a particular application, or suffer from some undesirable characteristics In this paper, we have introduced a quantitative measure called Indiex of FRairness The index is applicable to any resource sharing or allocation problem It is independent of the amount of the resource The fairness index always lies between 0 and 1 This boundedness aids intuitive understanding of the fairness index For example, a distribution algorithm with a fairness of 010 means that it is unfair to 90% of the users Also, the discrimination index can be defined as 1 - fairness index

4,476 citations

Proceedings ArticleDOI
03 Nov 2004
TL;DR: B-MAC's flexibility results in better packet delivery rates, throughput, latency, and energy consumption than S-MAC, and the need for flexible protocols to effectively realize energy efficient sensor network applications is illustrated.
Abstract: We propose B-MAC, a carrier sense media access protocol for wireless sensor networks that provides a flexible interface to obtain ultra low power operation, effective collision avoidance, and high channel utilization. To achieve low power operation, B-MAC employs an adaptive preamble sampling scheme to reduce duty cycle and minimize idle listening. B-MAC supports on-the-fly reconfiguration and provides bidirectional interfaces for system services to optimize performance, whether it be for throughput, latency, or power conservation. We build an analytical model of a class of sensor network applications. We use the model to show the effect of changing B-MAC's parameters and predict the behavior of sensor network applications. By comparing B-MAC to conventional 802.11-inspired protocols, specifically SMAC, we develop an experimental characterization of B-MAC over a wide range of network conditions. We show that B-MAC's flexibility results in better packet delivery rates, throughput, latency, and energy consumption than S-MAC. By deploying a real world monitoring application with multihop networking, we validate our protocol design and model. Our results illustrate the need for flexible protocols to effectively realize energy efficient sensor network applications.

3,631 citations


"Z-MAC: a hybrid MAC for wireless se..." refers background or methods or result in this paper

  • ...The B-MAC simulation result closely follows that in [ 3 ]....

    [...]

  • ...Unfortunately, we are not able to reproduce the same performance of B-MAC as shown in [ 3 ]....

    [...]

  • ...Both B-MAC and Z-MAC are tested under LPL with 100-ms check interval and with full duty cycle. Our result is very similar to that in [ 3 ]....

    [...]

  • ...The 10-hop chain experiment is reproduced from [ 3 ] to measure the latency of different protocols where 11 nodes are lined up side by side to create a line topology....

    [...]

  • ...These results are similar to the result of B-MAC with RTS/CTS in [ 3 ]....

    [...]

Proceedings ArticleDOI
05 Nov 2003
TL;DR: T-MAC, a contention-based Medium Access Control protocol for wireless sensor networks, introduces an adaptive duty cycle in a novel way: by dynamically ending the active part of it to handle load variations in time and location.
Abstract: In this paper we describe T-MAC, a contention-based Medium Access Control protocol for wireless sensor networks. Applications for these networks have some characteristics (low message rate, insensitivity to latency) that can be exploited to reduce energy consumption by introducing an activesleep duty cycle. To handle load variations in time and location T-MAC introduces an adaptive duty cycle in a novel way: by dynamically ending the active part of it. This reduces the amount of energy wasted on idle listening, in which nodes wait for potentially incoming messages, while still maintaining a reasonable throughput.We discuss the design of T-MAC, and provide a head-to-head comparison with classic CSMA (no duty cycle) and S-MAC (fixed duty cycle) through extensive simulations. Under homogeneous load, T-MAC and S-MAC achieve similar reductions in energy consumption (up to 98%) compared to CSMA. In a sample scenario with variable load, however, T-MAC outperforms S-MAC by a factor of 5. Preliminary energy-consumption measurements provide insight into the internal workings of the T-MAC protocol.

2,844 citations


"Z-MAC: a hybrid MAC for wireless se..." refers background in this paper

  • ...T-MAC [ 8 ] improves the energy efficiency of S-MAC by forcing all the transmitting nodes to start transmission at the beginning o f each active period....

    [...]

  • ...S-MAC [4] and T-MAC [ 8 ] are a hybrid of CSMA and...

    [...]

Journal ArticleDOI
TL;DR: This paper proposes S-MAC, a medium access control (MAC) protocol designed for wireless sensor networks that enables low-duty-cycle operation in a multihop network and reveals fundamental tradeoffs on energy, latency and throughput.
Abstract: This paper proposes S-MAC, a medium access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect sensor networks to be deployed in an ad hoc fashion, with nodes remaining largely inactive for long time, but becoming suddenly active when something is detected. These characteristics of sensor networks and applications motivate a MAC that is different from traditional wireless MACs such as IEEE 802.11 in several ways: energy conservation and self-configuration are primary goals, while per-node fairness and latency are less important. S-MAC uses a few novel techniques to reduce energy consumption and support self-configuration. It enables low-duty-cycle operation in a multihop network. Nodes form virtual clusters based on common sleep schedules to reduce control overhead and enable traffic-adaptive wake-up. S-MAC uses in-channel signaling to avoid overhearing unnecessary traffic. Finally, S-MAC applies message passing to reduce contention latency for applications that require in-network data processing. The paper presents measurement results of S-MAC performance on a sample sensor node, the UC Berkeley Mote, and reveals fundamental tradeoffs on energy, latency and throughput. Results show that S-MAC obtains significant energy savings compared with an 802.11-like MAC without sleeping.

2,843 citations


"Z-MAC: a hybrid MAC for wireless se..." refers background or methods in this paper

  • ...However, TDMA has many other disadvantages as documented in [ 4 ]....

    [...]

  • ...S-MAC [ 4 ] and T-MAC [8] are a hybrid of CSMA and...

    [...]