scispace - formally typeset
Search or ask a question
Journal ArticleDOI

ź-nets and simplex range queries

01 Dec 1987-Discrete and Computational Geometry (Springer New York)-Vol. 2, Iss: 1, pp 127-151
TL;DR: The concept of an ɛ-net of a set of points for an abstract set of ranges is introduced and sufficient conditions that a random sample is an Â-net with any desired probability are given.
Abstract: We demonstrate the existence of data structures for half-space and simplex range queries on finite point sets ind-dimensional space,dÂ?2, with linear storage andO(nÂ?) query time, $$\alpha = \frac{{d(d - 1)}}{{d(d - 1) + 1}} + \gamma for all \gamma > 0$$ . These bounds are better than those previously published for alldÂ?2. Based on ideas due to Vapnik and Chervonenkis, we introduce the concept of an Â?-net of a set of points for an abstract set of ranges and give sufficient conditions that a random sample is an Â?-net with any desired probability. Using these results, we demonstrate how random samples can be used to build a partition-tree structure that achieves the above query time.

Content maybe subject to copyright    Report

Citations
More filters
Posted Content
TL;DR: In this article, it was shown that any set of points in general position in the plane determines pairwise crossing segments, and the best known lower bound was proved more than 25 years ago by Aronov, Erd et al.
Abstract: We show that any set of $n$ points in general position in the plane determines $n^{1-o(1)}$ pairwise crossing segments. The best previously known lower bound, $\Omega\left(\sqrt n\right)$, was proved more than 25 years ago by Aronov, Erd\H os, Goddard, Kleitman, Klugerman, Pach, and Schulman. Our proof is fully constructive, and extends to dense geometric graphs.

4 citations

Journal ArticleDOI
TL;DR: In this article, the authors study the k-coverage problem of activating the minimum number of sensors to ensure that every point in the area is covered by at least k sensors.
Abstract: Wireless sensors rely on battery power, and in many applications it is difficult or prohibitive to replace them. Hence, in order to prolongate the system's lifetime, some sensors can be kept inactive while others perform all the tasks. In this paper, we study the k-coverage problem of activating the minimum number of sensors to ensure that every point in the area is covered by at least k sensors. This ensures higher fault tolerance, robustness, and improves many operations, among which position detection and intrusion detection. The k-coverage problem is trivially NP-complete, and hence we can only provide approximation algorithms. In this paper, we present an algorithm based on an extension of the classical e-net technique. This method gives an O(log M)- approximation, where M is the number of sensors in an optimal solution. We do not make any particular assumption on the shape of the areas covered by each sensor, besides that they must be closed, connected, and without holes.

4 citations

Posted Content
TL;DR: A survey of the known results related to the Danzer Problem and to the construction of dense forests can be found in this article, where a number of open problems are also discussed and discussed.
Abstract: A 1965 problem due to Danzer asks whether there exists a set with finite density in Euclidean space intersecting any convex body of volume one. A suitable weakening of the volume constraint leads to the (much more recent) problem of constructing \emph{dense forests}. These are discrete point sets getting uniformly close to long enough line segments. Progress towards these problems have so far involved a wide range of ideas surrounding areas as varied as combinatorial and computation geometry, convex geometry, Diophantine approximation, discrepancy theory, the theory of dynamical systems, the theory of exponential sums, Fourier analysis, homogeneous dynamics, the mathematical theory of quasicrystals and probability theory. The goal of this paper is to survey the known results related to the Danzer Problem and to the construction of dense forests, to generalise some of them and to state a number of open problems to make further progress towards a solution to this longstanding question.

4 citations

Posted Content
TL;DR: The first strongly polynomial (in both $n$ and $d$) approximation algorithm for finding a Tverberg point was given in this article, which is the current best known algorithm.
Abstract: $ ewcommand{\floor}[1]{\left\lfloor {#1} \right\rfloor} \renewcommand{\Re}{\mathbb{R}}$ Tverberg's theorem states that a set of $n$ points in $\Re^d$ can be partitioned into $\floor{n/(d+1)}$ sets with a common intersection. A point in this intersection (aka Tverberg point) is a centerpoint of the input point set, and the Tverberg partition provides a compact proof of this, which is algorithmically useful. Unfortunately, computing a Tverberg point exactly requires $n^{O(d^2)}$ time. We provide several new approximation algorithms for this problem, which improve either the running time or quality of approximation, or both. In particular, we provide the first strongly polynomial (in both $n$ and $d$) approximation algorithm for finding a Tverberg point.

4 citations

References
More filters
Book ChapterDOI
TL;DR: This chapter reproduces the English translation by B. Seckler of the paper by Vapnik and Chervonenkis in which they gave proofs for the innovative results they had obtained in a draft form in July 1966 and announced in 1968 in their note in Soviet Mathematics Doklady.
Abstract: This chapter reproduces the English translation by B. Seckler of the paper by Vapnik and Chervonenkis in which they gave proofs for the innovative results they had obtained in a draft form in July 1966 and announced in 1968 in their note in Soviet Mathematics Doklady. The paper was first published in Russian as Вапник В. Н. and Червоненкис А. Я. О равномерноЙ сходимости частот появления событиЙ к их вероятностям. Теория вероятностеЙ и ее применения 16(2), 264–279 (1971).

3,939 citations


"ź-nets and simplex range queries" refers background or methods or result in this paper

  • ...The drawback is that the constants, if deri~,ed from the results in [ 17 ], can be quite large....

    [...]

  • ...More generally, we characterize the classes of ranges for which there exists a function f(E) for e S0 such that any finite point set A has an e-net of size f(e), independently of the size of A. These are precisely the classes of ranges with finite Vapnik-Chervonenkis dimension, known as Vapnik-Chervonenkis classes [ 17 ], [9], [19], [1]....

    [...]

  • ...The key concepts and proof techniques of this section are based on the pioneering work of Vapnik and Chervonenkis [ 17 ]....

    [...]

  • ...Example 5. Let A be a set of n points in E 2. Since the dimension of (E 2, H~-) is 2, the results in [ 17, Theorem 2 ] show that there exists a 0.01-approximation V of A for positive half-planes (and thus for all half-planes) with I VI = 2,525,039....

    [...]

  • ...Using the related notion of an e-approxirnation (directly from [ 17 ]), we also point out trivial data structures of constant size that give approximate solutions to the counting problem for halfspaces in constant time (compare [13])....

    [...]

Book
01 Jan 1987
TL;DR: This book offers a modern approach to computational geo- metry, an area thatstudies the computational complexity of geometric problems with an important role in this study.
Abstract: This book offers a modern approach to computational geo- metry, an area thatstudies the computational complexity of geometric problems. Combinatorial investigations play an important role in this study.

2,284 citations


"ź-nets and simplex range queries" refers background in this paper

  • ...We conclude this section by examining the relationship between the notion of an e-net and the established notion of a centerpoint [21], [11] in combinatorial geometry....

    [...]

  • ..., [11] for a general treatment of arrangements....

    [...]

Journal ArticleDOI
TL;DR: This paper will answer the question in the affirmative by determining the exact upper bound of T if T is a family of subsets of some infinite set S then either there exists to each number n a set A ⊂ S with |A| = n such that |T ∩ A| = 2n or there exists some number N such that •A| c for each A⩾ N and some constant c.

1,029 citations


"ź-nets and simplex range queries" refers background in this paper

  • ...Now the assertion can be seen as the dual formulation of Caratheodry's theorem (see [ 15 ], Theorem 2.3.5), which states that if a point x is in the convex hull of a set A in E d, then there exists a subset A' of A such that JA'I -< d + 1 and x is in the convex hull of A'. []...

    [...]

Journal ArticleDOI
TL;DR: In this article, the convergence of a stochastic process indexed by a Gaussian process to a certain Gaussian processes indexed by the supremum norm was studied in a Donsker class.
Abstract: Let $(X, \mathscr{A}, P)$ be a probability space. Let $X_1, X_2,\cdots,$ be independent $X$-valued random variables with distribution $P$. Let $P_n := n^{-1}(\delta_{X_1} + \cdots + \delta_{X_n})$ be the empirical measure and let $ u_n := n^\frac{1}{2}(P_n - P)$. Given a class $\mathscr{C} \subset \mathscr{a}$, we study the convergence in law of $ u_n$, as a stochastic process indexed by $\mathscr{C}$, to a certain Gaussian process indexed by $\mathscr{C}$. If convergence holds with respect to the supremum norm $\sup_{C \in \mathscr{C}}|f(C)|$, in a suitable (usually nonseparable) function space, we call $\mathscr{C}$ a Donsker class. For measurability, $X$ may be a complete separable metric space, $\mathscr{a} =$ Borel sets, and $\mathscr{C}$ a suitable collection of closed sets or open sets. Then for the Donsker property it suffices that for some $m$, and every set $F \subset X$ with $m$ elements, $\mathscr{C}$ does not cut all subsets of $F$ (Vapnik-Cervonenkis classes). Another sufficient condition is based on metric entropy with inclusion. If $\mathscr{C}$ is a sequence $\{C_m\}$ independent for $P$, then $\mathscr{C}$ is a Donsker class if and only if for some $r, \sigma_m(P(C_m)(1 - P(C_m)))^r < \infty$.

555 citations

Journal ArticleDOI
TL;DR: A new formulation of the notion of duality that allows the unified treatment of a number of geometric problems is used, to solve two long-standing problems of computational geometry and to obtain a quadratic algorithm for computing the minimum-area triangle with vertices chosen amongn points in the plane.
Abstract: This paper uses a new formulation of the notion of duality that allows the unified treatment of a number of geometric problems. In particular, we are able to apply our approach to solve two long-standing problems of computational geometry: one is to obtain a quadratic algorithm for computing the minimum-area triangle with vertices chosen amongn points in the plane; the other is to produce an optimal algorithm for the half-plane range query problem. This problem is to preprocessn points in the plane, so that given a test half-plane, one can efficiently determine all points lying in the half-plane. We describe an optimalO(k + logn) time algorithm for answering such queries, wherek is the number of points to be reported. The algorithm requiresO(n) space andO(n logn) preprocessing time. Both of these results represent significant improvements over the best methods previously known. In addition, we give a number of new combinatorial results related to the computation of line arrangements.

286 citations


"ź-nets and simplex range queries" refers methods in this paper

  • ...It should be noted that better bounds are possible for reporting in two dimensions (specifically O(log n + t) time, where t is the number of points reported [3]), but these techniques only work for half-planes....

    [...]