scispace - formally typeset
Open AccessJournal ArticleDOI

ź-nets and simplex range queries

Reads0
Chats0
TLDR
The concept of an ɛ-net of a set of points for an abstract set of ranges is introduced and sufficient conditions that a random sample is an Â-net with any desired probability are given.
Abstract
We demonstrate the existence of data structures for half-space and simplex range queries on finite point sets ind-dimensional space,dÂ?2, with linear storage andO(nÂ?) query time, $$\alpha = \frac{{d(d - 1)}}{{d(d - 1) + 1}} + \gamma for all \gamma > 0$$ . These bounds are better than those previously published for alldÂ?2. Based on ideas due to Vapnik and Chervonenkis, we introduce the concept of an Â?-net of a set of points for an abstract set of ranges and give sufficient conditions that a random sample is an Â?-net with any desired probability. Using these results, we demonstrate how random samples can be used to build a partition-tree structure that achieves the above query time.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Selection and Orientation of Directional Sensors for Coverage Maximization

TL;DR: A simple greedy algorithm is designed that delivers a solution that k-covers at least half of the target points using at most M log(k|C|) sensors, where |C| is the maximum number of target points covered by a sensor and M is the minimum number of sensor required to k-cover all the given points.
Journal ArticleDOI

Lower bounds on the complexity of polytope range searching

TL;DR: It is proved that the worst case query time is Q(n/l/Hi) in the Euclidean plane, and more generally, Q((n/ log n)/m'l/d) in d-space, for d > 3, where n is the number of points and m is the amount of storage available.
Journal ArticleDOI

Geometric Separators for Finite-Element Meshes

TL;DR: A class of graphs that would occur naturally in finite-element and finite-difference problems is proposed and it is proved a bound on separators for this class of graph is O(n(d-1)d), which is the best possible bound.
Proceedings ArticleDOI

Weighted capacitated, priority, and geometric set cover via improved quasi-uniform sampling

TL;DR: This work provides a geometry-inspired algorithm whose approximation guarantee depends solely on an instance-specific combinatorial property known as shallow cell complexity (SCC), and settles an open question by showing that weighted instances of the capacitated covering problem with underlying network structure have O(1)-approximations.
Proceedings ArticleDOI

How to net a lot with little: small ε-nets for disks and halfspaces

TL;DR: In this paper, it was shown that disks and pseudo-disks in the plane as well as halfspaces in R3 allow e-nets of size only O(1/e), which is best possible up to a multiplicative constant.
References
More filters
Book ChapterDOI

On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities

TL;DR: This chapter reproduces the English translation by B. Seckler of the paper by Vapnik and Chervonenkis in which they gave proofs for the innovative results they had obtained in a draft form in July 1966 and announced in 1968 in their note in Soviet Mathematics Doklady.
Book

Algorithms in Combinatorial Geometry

TL;DR: This book offers a modern approach to computational geo- metry, an area thatstudies the computational complexity of geometric problems with an important role in this study.
Journal ArticleDOI

On the density of families of sets

TL;DR: This paper will answer the question in the affirmative by determining the exact upper bound of T if T is a family of subsets of some infinite set S then either there exists to each number n a set A ⊂ S with |A| = n such that |T ∩ A| = 2n or there exists some number N such that •A| c for each A⩾ N and some constant c.
Journal ArticleDOI

Central Limit Theorems for Empirical Measures

TL;DR: In this article, the convergence of a stochastic process indexed by a Gaussian process to a certain Gaussian processes indexed by the supremum norm was studied in a Donsker class.
Journal ArticleDOI

The power of geometric duality

TL;DR: A new formulation of the notion of duality that allows the unified treatment of a number of geometric problems is used, to solve two long-standing problems of computational geometry and to obtain a quadratic algorithm for computing the minimum-area triangle with vertices chosen amongn points in the plane.