scispace - formally typeset
Search or ask a question
Journal ArticleDOI

ZenGen, a tool to generate ordered configurations for systematic first-principles calculations: The Cr–Mo–Ni–Re system as a case study ☆

TL;DR: Zengen as discussed by the authors is a script-tool that automatically generates first-principles input files of all the ordered compounds of a given crystal structure in a given system, which can then be used in the thermodynamic phase modeling.
Abstract: “ZenGen” is a script-tool which helps us to automatically generate first-principles input files of all the ordered compounds of a given crystal structure in a given system. The complete set of heats of formation of each end-members can then easily be used in the thermodynamic phase modeling. “ZenGen” is a free and open source code, which can be downloaded from http://zengen.cnrs.fr . In order to test its applicability, we have chosen the quaternary system, Cr–Mo–Ni–Re as a case study to be investigated. The binary solid solution parameters have been estimated from special quasirandom structures (SQS) calculations. The σ-phase has been fully described without any adaptation to its crystal structure, i.e. with a 5-sublattice model, through first-principles calculation of the 4 5 = 1024 different ordered quaternary configurations. Several tentative ab initio phase diagrams are presented.

Summary (1 min read)

1. Introduction

  • The authors aim was not to assess thermodynamically this system, but rather to show that systematic DFT calculations can be run contently in this very complex system, that they allow the calculation of a preliminary ab initio computed phase diagram, and that they can be used as an input for a traditional Calphad assessment .
  • The results are presented in the section 3.

2. The ZenGen workflow

  • "ZenGen" is a free and open source code, governed by the CeCILL-B license under French law [7] , which is officially recognized by Open Source Initiative (OSI).
  • Zengen can be installed on Unix-Linux machines and uses Bash, Perl and Python languages.
  • It has been designed to run VASP program [8, 9] for the DFT calculations, but could be adapted to other first-principles codes.

2.1. Generation of ordered configurations

  • $ zengen.pl the user should enter the name of the crystal structure (X= C14, chi−phase, SQS type, also known as After the command.
  • Then, zengen.pl generates all the ordered configurations based on a simple algorithm which distributes atoms on all the inequivalent sites.
  • Finally, zengen.pl creates a folder containing all the ordered configurations labeled into subfolders (one by configuration), including all the files (POSCAR and POTCAR) needed to perform DFT calculations.

2.4. Post-treatment

  • At the moment, only the fcc, bcc, and hcp structures phases for binary systems are implemented.
  • Generated structures have been taken from the literature [12, 13, 14] respectively.

3.2. DFT computational details

  • In comparison with previous works, slight differences are observed and are explained by the different exchange-correlation functions and cut-off energy.
  • The same most stable configurations are found for each system.
  • Since the less stable quaternay configuration (Re:Ni:Cr:Mo:Cr, ∆ f H > 30 kJ/at) presents 6.6 valence electron and satisfies this electronic condition, it clearly shows that, even if the electronic argument may be important, the geometric one dominates strongly the σ−phase stability.

3.3.2. Ideal ternaries phase diagram

  • Without any adjustable parameter and with DFT lattice stability of pure elements (only enthalpies no entropy terms), the four ternary phase diagrams have been calculated using the Thermo-Calc software package.
  • With the exception of Cr-Mo-Ni, all the expected σ−phases appear in a reasonable range of compositions.

3.3.3. Additional interaction parameters

  • Using the same hypothesis, the quaternary phase diagram is plotted in Figure 7 in the form of several constant Ni-composition sections.
  • This plot allows to evaluate the quaternary extension of the σ−phase.
  • The most striking feature is the shrinking of the homogeneity range as a function of the Ni-content.
  • Thus, their result is in agreement with the empirical rule stating that the σ−phase forms for an average electron concentration range below the value of 8 [16, 26].

Did you find this useful? Give us your feedback

Figures (10)

Content maybe subject to copyright    Report

ZenGen
I
: a tool to generate ordered configurations for systematic
first-principles calculations,
example of the Cr–Mo–Ni–Re system
J.-C. Crivello
a,
, R. Souques
a
, N. Bourgeois
a
, A. Breidi
a
, J.-M. Joubert
a
a
Chimie M´etallurgique des Terres Rares (CMTR), Institut de Chimie et des Mat´eriaux Paris-Est (ICMPE), CNRS
UPEC UMR7182, 2–8 rue Henri Dunant, 94320 Thiais Cedex, France
Abstract
”ZenGen” is a script-tool which helps to automatically generate first-principles input files of all
the ordered compounds of a given crystal structure in a given system. The complete set of heats
of formation of each end-member can then easily be used in the thermodynamic phase modeling.
”ZenGen” is a free and open source code, which can be downloaded from http://zengen.cnrs.fr.
In order to illustrate its possibilities, the quaternary system, Cr–Mo–Ni–Re, has been investigated.
The binary solid solution parameters have been estimated from SQS calculations. The σphase
has been considered according to its crystal structure, i.e. with a 5-sublattice model, by the DFT
calculation of the 4
5
= 1024 dierent ordered quaternary configurations. Several tentative ab initio
phase diagrams are presented.
Keywords: Calphad, DFT, CEF, intermetallic, sigma-phase
I
Fully documented manual and program are available on http://zengen.cnrs.fr.
Corresponding author
Email address: crivello@icmpe.cnrs.fr (J.-C. Crivello)
Preprint submitted to Calphad August 10, 2015

1. Introduction1
The field of thermodynamic modeling has been recently stimulated by the progress of tech-2
niques allowing the calculation of thermodynamic quantities from first-principles calculations,3
such as the Density Functional Theory (DFT) [1]. These methods allow the estimation of forma-4
tion enthalpies of fully ordered compounds, taking into account their crystal structures. These5
calculations can be done not only for stable compounds, but also for metastable ones which6
play an important role in the description of these phases within the Compound Energy Formal-7
ism (CEF) [2, 3]. By using the CEF, any intermetallic phase could be described by a sublattice8
model for which every ordered configuration heat of formation has to be calculated. As an ex-9
ample, a binary phase with ve crystal sites, described in a 5-sublattice model generates 2
5
= 3210
dierent ordered configurations, a ternary 3
5
= 243 ... a huge number, but which can be calculated11
with today’s super-computers.12
Technically, performing calculations on a large number of end-members may cause two types13
of problems: (i) a mistake in the distribution of atoms among all dierent sites; (ii) a too fast14
relaxation of crystal structure, thus losing the initial symmetry. To avoid these kinds of errors,15
the ”ZenGen” code was created. This code is able to generate all the necessary input files for the16
DFT calculations of the ordered configurations considering a given system. It has been tested on17
several phases, such as Laves phases (C14, C15. . .), or other topologically close packed phases18
(A12, A13, D8
b
, P, δ, . . . ). It can also be used to run Special Quasi-random Structures (SQS)19
calculations [4]. A basic introduction of Zengen workflow is given is section 2.20
Then, in order to illustrate the ZenGen capacity, we have investigated the challenging quater-21
nary Cr–Mo–Ni–Re system. Our aim was not to assess thermodynamically this system, but rather22
to show that systematic DFT calculations can be run contently in this very complex system, that23
they allow the calculation of a preliminary ab initio computed phase diagram, and that they can be24
used as an input for a traditional Calphad assessment . We have demonstrated this approach in our25
previous works [5, 6]. The results are presented in the section 3.26
2

2. The ZenGen workflow27
”ZenGen” is a free and open source code, governed by the CeCILL-B license under French28
law [7], which is ocially recognized by Open Source Initiative (OSI). It can be downloaded from29
http://zengen.cnrs.fr. Zengen can be installed on Unix-Linux machines and uses Bash, Perl and30
Python languages. It has been designed to run VASP program [8, 9] for the DFT calculations, but31
could be adapted to other first-principles codes.32
It requires as input the phase ϕ under consideration the crystallographic structure of which33
is constituted by m dierent sites, and the n dierent elements. Then, ZenGen decomposes the34
process into four steps:35
1. Automatic generation of the input files for the n
m
ordered configurations;36
2. Setup of the convergence criteria and relaxation steps of the ϕ phase;37
3. Job execution under the same conditions;38
4. Collection of output results (total energy, crystallographic parameters) and generation of a39
TDB file.40
These steps are shown schematically in the diagram of Figure 1 and are more detailed in the41
following paragraphs.42
2.1. Generation of ordered configurations43
After the command:44
$ zengen.pl
the user should enter the name of the crystal structure (X= C14, chiphase, SQS type. . . ), and45
the name the chemical elements. The cut-o energy is also requested. For structures described by46
more than 2 nonequivalent sites, it is possible to merge sites in order to agree with a simplified sub-47
lattice description. Then, zengen.pl generates all the ordered configurations based on a simple48
algorithm which distributes atoms on all the inequivalent sites. The script separates the systems49
3

Figure 1: Schematic work flow chart of ZenGen.
(unary, binary, ternary...) and sorts the whole configurations by ascending the elemental compo-50
sition. Finally, zengen.pl creates a folder containing all the ordered configurations labeled into51
subfolders (one by configuration), including all the files (POSCAR and POTCAR) needed to perform52
DFT calculations.53
2.2. Setup of calculations54
The calculation is built into 2 interlinked loops: one on the configurations to be calculated, one55
on the relaxation step. The exe-X.sh file has to be modified by the user regarding the particular56
demand: numeration of configuration and relaxation steps to be calculated . See the manual for57
more details.58
4

2.3. Execution of DFT calculations59
After the setup of the exe-X.sh file, its execution can be done in blind process mode by:60
$ nohup ./exe-X.sh &
2.4. Post-treatment61
After the calculations, the post-treatment is made by the command:62
$ ./fin-X.pl
This script generates several files: a summary file sum.out, and a database file: X.TDB. The63
sum.out file contains the total energy, cell parameters, internal positions and magnetic moment of64
every configuration calculated by exe-X.sh. The X.TDB file can be used as an input file for ther-65
modynamic calculation softwares, such as Thermo-Calc [10] or Open-Calphad [11]. It contains,66
for each configuration C in the ϕ phase, the corresponding formation energy, called
f
H
ϕ
(C),67
given in Joule per formula unit, obtained by the dierence between the total energies of E
ϕ
(C) and68
those of he weighted pure i elements in their standard element reference state (SER), E
SER
i
:69
f
H
ϕ
(C) = E
ϕ
(C)
X
i
x
i
· E
SER
i
(1)
The E
SER
i
and E
ϕ
i
(ϕ = A1, A2, A3) have already been calculated with and without spin-polarization.70
They are provided for several cut-o energies (5 sets: 300, 400, 500, 600, and 800 eV) in the folder71
pure of the Zengen installation directory. Figure 2 shows the available i elements of the current72
version.73
A user guide is available on the website http://zengen.cnrs.fr (”Documentation” page), includ-74
ing: the installation procedure, a tutorial, additional explanation, algorithm details, appendices...75
5

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the Gibbs energy of the Ag-Ge-Ni system was modeled using the phase diagram method with associated data from this work and relevant literature information, and the solidus temperatures of Ag-rich alloys were measured using differential thermal analysis and the energy of mixing for the FCC_A1 phase was calculated using the special quasi-random structures technique.
Abstract: Gibbs energy modeling of Ag-Ge and Ag-Ge-Ni systems was done using the calculation of the phase diagram method with associated data from this work and relevant literature information. In the Ag-Ge system, the solidus temperatures of Ag-rich alloys are measured using differential thermal analysis, and the energy of mixing for the FCC_A1 phase is calculated using the special quasi-random structures technique. The isothermal sections of the Ag-Ge-Ni system at 1023 K and 673 K are also experimentally determined. These data and findings in the relevant literature are used to model the Gibbs energy of the Ag-Ge and Ag-Ge- Ni systems. A reaction scheme and a liquidus projection of the Ag-Ge-Ni system are determined.

6 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed a new integrated thermodynamic and molar volume model to consider physically both mixing and order factors of the sigma phase, and the integrated model was built within the compound energy formalism (CEF), enabling the thermodynamic calculations to determine equilibrium site occupancies for subsequent volume calculations.

6 citations

Journal ArticleDOI
TL;DR: In this paper , the effects of the influencing factors, including the size and electronic factors, on the atomic distribution of the inequivalent crystallographic sites of the μ phase based on first-principles calculations were clarified.

6 citations

Journal ArticleDOI
TL;DR: In this article, the stability of the MoNi2 and MoNi8 compounds has been discussed in detail, and decision about their inclusion in thermodynamic assessment of MoNi system has been made.
Abstract: Thermodynamic stability of the MoNi2 and MoNi8 compounds has been discussed in detail, and decision about their inclusion in thermodynamic assessment of the Mo–Ni system has been made. Enthalpies of formation of all Mo–Ni intermetallic compounds have been determined with the help of DFT calculations whereas enthalpies of mixing in the solid solutions are estimated using special quasi-random structures. Experimental phase equilibria information gathered in our recent partial investigation of the Mo–Ni system has been incorporated and thermodynamic reassessment of the Mo–Ni system has been performed with the help of the CALPHAD method. The calculated Mo–Ni phase diagram showed good agreement with selected experimental information.

6 citations

Journal ArticleDOI
TL;DR: In this article, a bottom-up Calphad dataset for the thermokinetic simulation of duplex steels was used to improve the performance of the binary and ternaries sub-systems.
Abstract: Thermodynamic modeling of the σ phase was revised according to the three sublattice model developed for the Fe–Cr system (Fe,Cr)10(Fe,Cr)4(Fe,Cr)16 in the view of simulating thermodynamics and kinetics for duplex stainless steels. The alloying elements Mn, Mo and Ni relevant in duplex steels were added to the σ phase model and their thermodynamic parameters were optimized. As a consequence of the change of thermodynamic model and parameters for the σ phases, alloy phases were also re-optimized. The present work include re-optimization of binaries and ternaries sub-systems in order to build a consistent bottom-up Calphad dataset for the thermokinetic simulation of duplex steels.

6 citations

References
More filters
Journal ArticleDOI
TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Abstract: Generalized gradient approximations (GGA’s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. [S0031-9007(96)01479-2] PACS numbers: 71.15.Mb, 71.45.Gm Kohn-Sham density functional theory [1,2] is widely used for self-consistent-field electronic structure calculations of the ground-state properties of atoms, molecules, and solids. In this theory, only the exchange-correlation energy EXC › EX 1 EC as a functional of the electron spin densities n"srd and n#srd must be approximated. The most popular functionals have a form appropriate for slowly varying densities: the local spin density (LSD) approximation Z d 3 rn e unif

146,533 citations

Journal ArticleDOI
TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Abstract: We present an efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set. In the first part the application of Pulay's DIIS method (direct inversion in the iterative subspace) to the iterative diagonalization of large matrices will be discussed. Our approach is stable, reliable, and minimizes the number of order ${\mathit{N}}_{\mathrm{atoms}}^{3}$ operations. In the second part, we will discuss an efficient mixing scheme also based on Pulay's scheme. A special ``metric'' and a special ``preconditioning'' optimized for a plane-wave basis set will be introduced. Scaling of the method will be discussed in detail for non-self-consistent and self-consistent calculations. It will be shown that the number of iterations required to obtain a specific precision is almost independent of the system size. Altogether an order ${\mathit{N}}_{\mathrm{atoms}}^{2}$ scaling is found for systems containing up to 1000 electrons. If we take into account that the number of k points can be decreased linearly with the system size, the overall scaling can approach ${\mathit{N}}_{\mathrm{atoms}}$. We have implemented these algorithms within a powerful package called VASP (Vienna ab initio simulation package). The program and the techniques have been used successfully for a large number of different systems (liquid and amorphous semiconductors, liquid simple and transition metals, metallic and semiconducting surfaces, phonons in simple metals, transition metals, and semiconductors) and turned out to be very reliable. \textcopyright{} 1996 The American Physical Society.

81,985 citations

Journal ArticleDOI
Peter E. Blöchl1
TL;DR: An approach for electronic structure calculations is described that generalizes both the pseudopotential method and the linear augmented-plane-wave (LAPW) method in a natural way and can be used to treat first-row and transition-metal elements with affordable effort and provides access to the full wave function.
Abstract: An approach for electronic structure calculations is described that generalizes both the pseudopotential method and the linear augmented-plane-wave (LAPW) method in a natural way. The method allows high-quality first-principles molecular-dynamics calculations to be performed using the original fictitious Lagrangian approach of Car and Parrinello. Like the LAPW method it can be used to treat first-row and transition-metal elements with affordable effort and provides access to the full wave function. The augmentation procedure is generalized in that partial-wave expansions are not determined by the value and the derivative of the envelope function at some muffin-tin radius, but rather by the overlap with localized projector functions. The pseudopotential approach based on generalized separable pseudopotentials can be regained by a simple approximation.

61,450 citations

Journal ArticleDOI
TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Abstract: The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Bl\"ochl's projector augmented wave (PAW) method is derived. It is shown that the total energy functional for US pseudopotentials can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudopotential method with relaxed core all electron methods. These tests include small molecules $({\mathrm{H}}_{2}{,\mathrm{}\mathrm{H}}_{2}{\mathrm{O},\mathrm{}\mathrm{Li}}_{2}{,\mathrm{}\mathrm{N}}_{2}{,\mathrm{}\mathrm{F}}_{2}{,\mathrm{}\mathrm{BF}}_{3}{,\mathrm{}\mathrm{SiF}}_{4})$ and several bulk systems (diamond, Si, V, Li, Ca, ${\mathrm{CaF}}_{2},$ Fe, Co, Ni). Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.

57,691 citations

Journal ArticleDOI
TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.

47,666 citations