scispace - formally typeset
Search or ask a question
Journal ArticleDOI

ZnO-Based Dye-Sensitized Solar Cells

18 Apr 2012-Journal of Physical Chemistry C (American Chemical Society)-Vol. 116, Iss: 21, pp 11413-11425
TL;DR: In this article, a change of focus of the current research on ZnO-based DSCs (from morphology to surface control) is suggested and the origin of this striking difference in performance is analyzed and discussed with the perspective of future applications of ZnOs in dye-sensitized solar cells and related devices.
Abstract: ZnO was one of the first metal oxides used in dye-sensitized solar cells (DSCs). It exhibits a unique combination of potentially interesting properties such as high bulk electron mobility and probably the richest variety of nanostructures based on a very wide range of synthesis routes. However, in spite of the huge amount of literature produced in the past few years, the reported efficiencies of ZnO-based solar cells are still far from their TiO2 counterparts. The origin of this striking difference in performance is analyzed and discussed with the perspective of future applications of ZnO in dye-sensitized solar cells and related devices. In this regard, a change of focus of the current research on ZnO-based DSCs (from morphology to surface control) is suggested.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the application of photocatalytic degradation and the antibacterial properties of zinc oxide (ZnO) nanomaterials is reviewed, and the main methods that improve antibacterial activities are coating inorganic or organic antimicrobial agents, doping ZnO, and tuning the size, morphological characteristics, and concentration of ZnOs.

779 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the chiral stationary phase transition of Na6(CO3)(SO4) to Na2SO4 using a high-performance liquid chromatography apparatus (HPCA) for the first time.
Abstract: Yu Bai,†,‡ Ivań Mora-Sero,́ Filippo De Angelis, Juan Bisquert, and Peng Wang*,† †State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China ‡Institute of Chemistry and Energy Material Innovation, Academy of Fundamental Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, China Photovoltaic and Optoelectronic Devices Group, Departament de Física, Universitat Jaume I, 12071 Castello,́ Spain Istituto CNR di Scienze e Tecnologie Molecolari, c/o Dipartimento di Chimica, Universita ̀ di Perugia, via Elce di Sotto 8, I-06123 Perugia, Italy

669 citations

Journal ArticleDOI
TL;DR: In this article, the performance of zinc oxide (ZnO) has been improved by tailoring its surface-bulk structure and altering its photogenerated charge transfer pathways with an intention to inhibit the surfacebulk charge carrier recombination.
Abstract: As an alternative to the gold standard TiO2 photocatalyst, the use of zinc oxide (ZnO) as a robust candidate for wastewater treatment is widespread due to its similarity in charge carrier dynamics upon bandgap excitation and the generation of reactive oxygen species in aqueous suspensions with TiO2. However, the large bandgap of ZnO, the massive charge carrier recombination, and the photoinduced corrosion–dissolution at extreme pH conditions, together with the formation of inert Zn(OH)2 during photocatalytic reactions act as barriers for its extensive applicability. To this end, research has been intensified to improve the performance of ZnO by tailoring its surface-bulk structure and by altering its photogenerated charge transfer pathways with an intention to inhibit the surface-bulk charge carrier recombination. For the first time, the several strategies, such as tailoring the intrinsic defects, surface modification with organic compounds, doping with foreign ions, noble metal deposition, heterostructuring with other semiconductors and modification with carbon nanostructures, which have been successfully employed to improve the photoactivity and stability of ZnO are critically reviewed. Such modifications enhance the charge separation and facilitate the generation of reactive oxygenated free radicals, and also the interaction with the pollutant molecules. The synthetic route to obtain hierarchical nanostructured morphologies and study their impact on the photocatalytic performance is explained by considering the morphological influence and the defect-rich chemistry of ZnO. Finally, the crystal facet engineering of polar and non-polar facets and their relevance in photocatalysis is outlined. It is with this intention that the present review directs the further design, tailoring and tuning of the physico-chemical and optoelectronic properties of ZnO for better applications, ranging from photocatalysis to photovoltaics.

643 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on processes that are essential in terms of photovoltaic and photocatlytic cells, and focus on the processes that can be improved.
Abstract: Review: emphasis on processes that are essential in terms of photovoltaic and photocatlytic cells; 655 refs.

440 citations

Journal ArticleDOI
03 Jan 2020
TL;DR: The metal oxides have been of great importance to the development of energy conversion and storage technologies including heterojunction solar cells, Li-ion batteries, and electrocatalysts/photocatalys.
Abstract: Metal oxides have been of great importance to the development of energy conversion and storage technologies including heterojunction solar cells, Li-ion batteries, and electrocatalysts/photocatalys...

408 citations

References
More filters
Journal ArticleDOI
24 Oct 1991-Nature
TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Abstract: THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times more than conventional methods1. Here we describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency. The device is based on a 10-µm-thick, optically transparent film of titanium dioxide particles a few nanometres in size, coated with a monolayer of a charge-transfer dye to sensitize the film for light harvesting. Because of the high surface area of the semiconductor film and the ideal spectral characteristics of the dye, the device harvests a high proportion of the incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion of incident photons to electrical current (more than 80%). The overall light-to-electric energy conversion yield is 7.1-7.9% in simulated solar light and 12% in diffuse daylight. The large current densities (greater than 12 mA cm-2) and exceptional stability (sustaining at least five million turnovers without decomposition), as well as the low cost, make practical applications feasible.

26,457 citations

Journal ArticleDOI
04 Nov 2011-Science
TL;DR: In this article, a Co(II/III)tris(bipyridyl)-based redox electrolyte was used in conjunction with a custom synthesized donor-π-bridge-acceptor zinc porphyrin dye as sensitizer (designated YD2-o-C8).
Abstract: The iodide/triiodide redox shuttle has limited the efficiencies accessible in dye-sensitized solar cells. Here, we report mesoscopic solar cells that incorporate a Co(II/III)tris(bipyridyl)–based redox electrolyte in conjunction with a custom synthesized donor-π-bridge-acceptor zinc porphyrin dye as sensitizer (designated YD2-o-C8). The specific molecular design of YD2-o-C8 greatly retards the rate of interfacial back electron transfer from the conduction band of the nanocrystalline titanium dioxide film to the oxidized cobalt mediator, which enables attainment of strikingly high photovoltages approaching 1 volt. Because the YD2-o-C8 porphyrin harvests sunlight across the visible spectrum, large photocurrents are generated. Cosensitization of YD2-o-C8 with another organic dye further enhances the performance of the device, leading to a measured power conversion efficiency of 12.3% under simulated air mass 1.5 global sunlight.

5,462 citations

Journal Article
01 Jan 2011-Science
TL;DR: Mesoscopic solar cells that incorporate a Co(II/III)tris(bipyridyl)–based redox electrolyte in conjunction with a custom synthesized donor-π-bridge-acceptor zinc porphyrin dye as sensitizer are reported, enabling attainment of strikingly high photovoltages approaching 1 volt.
Abstract: Simultaneous modification of the dye and redox shuttle boosts the efficiency of a dye-sensitized solar cell. The iodide/triiodide redox shuttle has limited the efficiencies accessible in dye-sensitized solar cells. Here, we report mesoscopic solar cells that incorporate a Co(II/III)tris(bipyridyl)–based redox electrolyte in conjunction with a custom synthesized donor-π-bridge-acceptor zinc porphyrin dye as sensitizer (designated YD2-o-C8). The specific molecular design of YD2-o-C8 greatly retards the rate of interfacial back electron transfer from the conduction band of the nanocrystalline titanium dioxide film to the oxidized cobalt mediator, which enables attainment of strikingly high photovoltages approaching 1 volt. Because the YD2-o-C8 porphyrin harvests sunlight across the visible spectrum, large photocurrents are generated. Cosensitization of YD2-o-C8 with another organic dye further enhances the performance of the device, leading to a measured power conversion efficiency of 12.3% under simulated air mass 1.5 global sunlight.

5,385 citations

Journal ArticleDOI
TL;DR: This work introduces a version of the dye-sensitized cell in which the traditional nanoparticle film is replaced by a dense array of oriented, crystalline ZnO nanowires, which features a surface area up to one-fifth as large as a nanoparticle cell.
Abstract: Excitonic solar cells1—including organic, hybrid organic–inorganic and dye-sensitized cells (DSCs)—are promising devices for inexpensive, large-scale solar energy conversion. The DSC is currently the most efficient2 and stable3 excitonic photocell. Central to this device is a thick nanoparticle film that provides a large surface area for the adsorption of light-harvesting molecules. However, nanoparticle DSCs rely on trap-limited diffusion for electron transport, a slow mechanism that can limit device efficiency, especially at longer wavelengths. Here we introduce a version of the dye-sensitized cell in which the traditional nanoparticle film is replaced by a dense array of oriented, crystalline ZnO nanowires. The nanowire anode is synthesized by mild aqueous chemistry and features a surface area up to one-fifth as large as a nanoparticle cell. The direct electrical pathways provided by the nanowires ensure the rapid collection of carriers generated throughout the device, and a full Sun efficiency of 1.5% is demonstrated, limited primarily by the surface area of the nanowire array.

5,308 citations