scispace - formally typeset
Search or ask a question
Browse all papers

Journal ArticleDOI
TL;DR: In patients with previously untreated metastatic nonsquamous NSCLC without EGFR or ALK mutations, the addition of pembrolizumab to standard chemotherapy of pemetrexed and a platinum‐based drug resulted in significantly longer overall survival and progression‐free survival than chemotherapy alone.
Abstract: Background First-line therapy for advanced non–small-cell lung cancer (NSCLC) that lacks targetable mutations is platinum-based chemotherapy. Among patients with a tumor proportion score for programmed death ligand 1 (PD-L1) of 50% or greater, pembrolizumab has replaced cytotoxic chemotherapy as the first-line treatment of choice. The addition of pembrolizumab to chemotherapy resulted in significantly higher rates of response and longer progression-free survival than chemotherapy alone in a phase 2 trial. Methods In this double-blind, phase 3 trial, we randomly assigned (in a 2:1 ratio) 616 patients with metastatic nonsquamous NSCLC without sensitizing EGFR or ALK mutations who had received no previous treatment for metastatic disease to receive pemetrexed and a platinum-based drug plus either 200 mg of pembrolizumab or placebo every 3 weeks for 4 cycles, followed by pembrolizumab or placebo for up to a total of 35 cycles plus pemetrexed maintenance therapy. Crossover to pembrolizumab monotherapy...

4,102 citations



Proceedings Article
05 Dec 2016
TL;DR: In this paper, a network that maps a small labeled support set and an unlabeled example to its label obviates the need for fine-tuning to adapt to new class types.
Abstract: Learning from a few examples remains a key challenge in machine learning. Despite recent advances in important domains such as vision and language, the standard supervised deep learning paradigm does not offer a satisfactory solution for learning new concepts rapidly from little data. In this work, we employ ideas from metric learning based on deep neural features and from recent advances that augment neural networks with external memories. Our framework learns a network that maps a small labelled support set and an unlabelled example to its label, obviating the need for fine-tuning to adapt to new class types. We then define one-shot learning problems on vision (using Omniglot, ImageNet) and language tasks. Our algorithm improves one-shot accuracy on ImageNet from 87.6% to 93.2% and from 88.0% to 93.8% on Omniglot compared to competing approaches. We also demonstrate the usefulness of the same model on language modeling by introducing a one-shot task on the Penn Treebank.

4,075 citations


Journal ArticleDOI
TL;DR: The socio-economic effects of COVID-19 on individual aspects of the world economy are summarised to show the need for medical supplies has significantly increased and the food sector has seen a great demand due to panic-buying and stockpiling of food products.

4,060 citations


Proceedings Article
23 Feb 2016
TL;DR: In this article, the authors show that training with residual connections accelerates the training of Inception networks significantly, and they also present several new streamlined architectures for both residual and non-residual Inception Networks.
Abstract: Very deep convolutional networks have been central to the largest advances in image recognition performance in recent years. One example is the Inception architecture that has been shown to achieve very good performance at relatively low computational cost. Recently, the introduction of residual connections in conjunction with a more traditional architecture has yielded state-of-the-art performance in the 2015 ILSVRC challenge; its performance was similar to the latest generation Inception-v3 network. This raises the question: Are there any benefits to combining Inception architectures with residual connections? Here we give clear empirical evidence that training with residual connections accelerates the training of Inception networks significantly. There is also some evidence of residual Inception networks outperforming similarly expensive Inception networks without residual connections by a thin margin. We also present several new streamlined architectures for both residual and non-residual Inception networks. These variations improve the single-frame recognition performance on the ILSVRC 2012 classification task significantly. We further demonstrate how proper activation scaling stabilizes the training of very wide residual Inception networks. With an ensemble of three residual and one Inception-v4 networks, we achieve 3.08% top-5 error on the test set of the ImageNet classification (CLS) challenge.

4,051 citations


Journal ArticleDOI
Adrian M. Price-Whelan1, B. M. Sipőcz1, Hans Moritz Günther1, P. L. Lim1, Steven M. Crawford1, S. Conseil1, D. L. Shupe1, M. W. Craig1, N. Dencheva1, Adam Ginsburg1, Jacob T VanderPlas1, Larry Bradley1, David Pérez-Suárez1, M. de Val-Borro1, T. L. Aldcroft1, Kelle L. Cruz1, Thomas P. Robitaille1, E. J. Tollerud1, C. Ardelean1, Tomáš Babej1, Y. P. Bach1, Matteo Bachetti1, A. V. Bakanov1, Steven P. Bamford1, Geert Barentsen1, Pauline Barmby1, Andreas Baumbach1, Katherine Berry1, F. Biscani1, Médéric Boquien1, K. A. Bostroem1, L. G. Bouma1, G. B. Brammer1, E. M. Bray1, H. Breytenbach1, H. Buddelmeijer1, D. J. Burke1, G. Calderone1, J. L. Cano Rodríguez1, Mihai Cara1, José Vinícius de Miranda Cardoso1, S. Cheedella1, Y. Copin1, Lia Corrales1, Devin Crichton1, D. DÁvella1, Christoph Deil1, É. Depagne1, J. P. Dietrich1, Axel Donath1, M. Droettboom1, Nicholas Earl1, T. Erben1, Sebastien Fabbro1, Leonardo Ferreira1, T. Finethy1, R. T. Fox1, Lehman H. Garrison1, S. L. J. Gibbons1, Daniel A. Goldstein1, Ralf Gommers1, Johnny P. Greco1, P. Greenfield1, A. M. Groener1, Frédéric Grollier1, A. Hagen1, P. Hirst1, Derek Homeier1, Anthony Horton1, Griffin Hosseinzadeh1, L. Hu1, J. S. Hunkeler1, Ž. Ivezić1, A. Jain1, T. Jenness1, G. Kanarek1, Sarah Kendrew1, Nicholas S. Kern1, Wolfgang Kerzendorf1, A. Khvalko1, J. King1, D. Kirkby1, A. M. Kulkarni1, Ashok Kumar1, Antony Lee1, D. Lenz1, S. P. Littlefair1, Zhiyuan Ma1, D. M. Macleod1, M. Mastropietro1, C. McCully1, S. Montagnac1, Brett M. Morris1, M. Mueller1, Stuart Mumford1, D. Muna1, Nicholas A. Murphy1, Stefan Nelson1, G. H. Nguyen1, Joe Philip Ninan1, M. Nöthe1, S. Ogaz1, Seog Oh1, J. K. Parejko1, N. R. Parley1, Sergio Pascual1, R. Patil1, A. A. Patil1, A. L. Plunkett1, Jason X. Prochaska1, T. Rastogi1, V. Reddy Janga1, J. Sabater1, Parikshit Sakurikar1, Michael Seifert1, L. E. Sherbert1, H. Sherwood-Taylor1, A. Y. Shih1, J. Sick1, M. T. Silbiger1, Sudheesh Singanamalla1, Leo Singer1, P. H. Sladen1, K. A. Sooley1, S. Sornarajah1, Ole Streicher1, P. Teuben1, Scott Thomas1, Grant R. Tremblay1, J. Turner1, V. Terrón1, M. H. van Kerkwijk1, A. de la Vega1, Laura L. Watkins1, B. A. Weaver1, J. Whitmore1, Julien Woillez1, Victor Zabalza1, Astropy Contributors1 
TL;DR: The Astropy project as discussed by the authors is a Python project supporting the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community, including the core package astropy.
Abstract: The Astropy Project supports and fosters the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community. A key element of the Astropy Project is the core package astropy, which serves as the foundation for more specialized projects and packages. In this article, we provide an overview of the organization of the Astropy project and summarize key features in the core package, as of the recent major release, version 2.0. We then describe the project infrastructure designed to facilitate and support development for a broader ecosystem of interoperable packages. We conclude with a future outlook of planned new features and directions for the broader Astropy Project.

4,044 citations


Journal ArticleDOI
TL;DR: Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography and the European Association of Cardiovascular Imaging are presented.
Abstract: Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography : An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging

4,020 citations


Posted Content
TL;DR: In this article, a new convolutional network module is proposed to aggregate multi-scale contextual information without losing resolution, and the architecture is based on the fact that dilated convolutions support exponential expansion of the receptive field without loss of resolution or coverage.
Abstract: State-of-the-art models for semantic segmentation are based on adaptations of convolutional networks that had originally been designed for image classification. However, dense prediction and image classification are structurally different. In this work, we develop a new convolutional network module that is specifically designed for dense prediction. The presented module uses dilated convolutions to systematically aggregate multi-scale contextual information without losing resolution. The architecture is based on the fact that dilated convolutions support exponential expansion of the receptive field without loss of resolution or coverage. We show that the presented context module increases the accuracy of state-of-the-art semantic segmentation systems. In addition, we examine the adaptation of image classification networks to dense prediction and show that simplifying the adapted network can increase accuracy.

4,018 citations


Posted Content
TL;DR: This paper proposed WaveNet, a deep neural network for generating audio waveforms, which is fully probabilistic and autoregressive, with the predictive distribution for each audio sample conditioned on all previous ones.
Abstract: This paper introduces WaveNet, a deep neural network for generating raw audio waveforms. The model is fully probabilistic and autoregressive, with the predictive distribution for each audio sample conditioned on all previous ones; nonetheless we show that it can be efficiently trained on data with tens of thousands of samples per second of audio. When applied to text-to-speech, it yields state-of-the-art performance, with human listeners rating it as significantly more natural sounding than the best parametric and concatenative systems for both English and Mandarin. A single WaveNet can capture the characteristics of many different speakers with equal fidelity, and can switch between them by conditioning on the speaker identity. When trained to model music, we find that it generates novel and often highly realistic musical fragments. We also show that it can be employed as a discriminative model, returning promising results for phoneme recognition.

4,002 citations


Proceedings ArticleDOI
07 Jun 2015
TL;DR: A model that generates natural language descriptions of images and their regions based on a novel combination of Convolutional Neural Networks over image regions, bidirectional Recurrent Neural networks over sentences, and a structured objective that aligns the two modalities through a multimodal embedding is presented.
Abstract: We present a model that generates natural language descriptions of images and their regions. Our approach leverages datasets of images and their sentence descriptions to learn about the inter-modal correspondences between language and visual data. Our alignment model is based on a novel combination of Convolutional Neural Networks over image regions, bidirectional Recurrent Neural Networks over sentences, and a structured objective that aligns the two modalities through a multimodal embedding. We then describe a Multimodal Recurrent Neural Network architecture that uses the inferred alignments to learn to generate novel descriptions of image regions. We demonstrate that our alignment model produces state of the art results in retrieval experiments on Flickr8K, Flickr30K and MSCOCO datasets. We then show that the generated descriptions significantly outperform retrieval baselines on both full images and on a new dataset of region-level annotations.

3,996 citations


Proceedings Article
07 Dec 2015
TL;DR: In this paper, the authors proposed a method to reduce the storage and computation required by neural networks by an order of magnitude without affecting their accuracy by learning only the important connections using a three-step method.
Abstract: Neural networks are both computationally intensive and memory intensive, making them difficult to deploy on embedded systems. Also, conventional networks fix the architecture before training starts; as a result, training cannot improve the architecture. To address these limitations, we describe a method to reduce the storage and computation required by neural networks by an order of magnitude without affecting their accuracy by learning only the important connections. Our method prunes redundant connections using a three-step method. First, we train the network to learn which connections are important. Next, we prune the unimportant connections. Finally, we retrain the network to fine tune the weights of the remaining connections. On the ImageNet dataset, our method reduced the number of parameters of AlexNet by a factor of 9x, from 61 million to 6.7 million, without incurring accuracy loss. Similar experiments with VGG-16 found that the total number of parameters can be reduced by 13x, from 138 million to 10.3 million, again with no loss of accuracy.

Journal ArticleDOI
TL;DR: The authors found that people are much more likely to believe stories that favor their preferred candidate, especially if they have ideologically segregated social media networks, and that the average American adult saw on the order of one or perhaps several fake news stories in the months around the 2016 U.S. presidential election, with just over half of those who recalled seeing them believing them.
Abstract: Following the 2016 U.S. presidential election, many have expressed concern about the effects of false stories (“fake news”), circulated largely through social media. We discuss the economics of fake news and present new data on its consumption prior to the election. Drawing on web browsing data, archives of fact-checking websites, and results from a new online survey, we find: (i) social media was an important but not dominant source of election news, with 14 percent of Americans calling social media their “most important” source; (ii) of the known false news stories that appeared in the three months before the election, those favoring Trump were shared a total of 30 million times on Facebook, while those favoring Clinton were shared 8 million times; (iii) the average American adult saw on the order of one or perhaps several fake news stories in the months around the election, with just over half of those who recalled seeing them believing them; and (iv) people are much more likely to believe stories that favor their preferred candidate, especially if they have ideologically segregated social media networks.

Proceedings ArticleDOI
21 Jul 2017
TL;DR: Part Affinity Fields (PAFs) as discussed by the authors uses a nonparametric representation to learn to associate body parts with individuals in the image and achieves state-of-the-art performance on the MPII Multi-Person benchmark.
Abstract: We present an approach to efficiently detect the 2D pose of multiple people in an image. The approach uses a nonparametric representation, which we refer to as Part Affinity Fields (PAFs), to learn to associate body parts with individuals in the image. The architecture encodes global context, allowing a greedy bottom-up parsing step that maintains high accuracy while achieving realtime performance, irrespective of the number of people in the image. The architecture is designed to jointly learn part locations and their association via two branches of the same sequential prediction process. Our method placed first in the inaugural COCO 2016 keypoints challenge, and significantly exceeds the previous state-of-the-art result on the MPII Multi-Person benchmark, both in performance and efficiency.

Journal ArticleDOI
TL;DR: A research initiative that aims to accelerate progress toward a new era of precision medicine, with a near-term focus on cancers and a longer-term aim to generate knowledge applicable to the whole range of health and disease.
Abstract: President Obama has announced a research initiative that aims to accelerate progress toward a new era of precision medicine, with a near-term focus on cancers and a longer-term aim to generate knowledge applicable to the whole range of health and disease.

Journal ArticleDOI
TL;DR: Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded proteins and the inflammatory reaction.
Abstract: Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on microglia and astroglia, and trigger an innate immune response characterised by release of inflammatory mediators, which contribute to disease progression and severity. Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded proteins and the inflammatory reaction. External factors, including systemic inflammation and obesity, are likely to interfere with immunological processes of the brain and further promote disease progression. Modulation of risk factors and targeting of these immune mechanisms could lead to future therapeutic or preventive strategies for Alzheimer's disease.

Journal ArticleDOI
TL;DR: The purpose of this article is to clearly describe the differences in indications between scoping reviews and systematic reviews and to provide guidance for when a scoping review is (and is not) appropriate.
Abstract: Scoping reviews are a relatively new approach to evidence synthesis and currently there exists little guidance regarding the decision to choose between a systematic review or scoping review approach when synthesising evidence. The purpose of this article is to clearly describe the differences in indications between scoping reviews and systematic reviews and to provide guidance for when a scoping review is (and is not) appropriate. Researchers may conduct scoping reviews instead of systematic reviews where the purpose of the review is to identify knowledge gaps, scope a body of literature, clarify concepts or to investigate research conduct. While useful in their own right, scoping reviews may also be helpful precursors to systematic reviews and can be used to confirm the relevance of inclusion criteria and potential questions. Scoping reviews are a useful tool in the ever increasing arsenal of evidence synthesis approaches. Although conducted for different purposes compared to systematic reviews, scoping reviews still require rigorous and transparent methods in their conduct to ensure that the results are trustworthy. Our hope is that with clear guidance available regarding whether to conduct a scoping review or a systematic review, there will be less scoping reviews being performed for inappropriate indications better served by a systematic review, and vice-versa.

Journal ArticleDOI
TL;DR: The 2017 McDonald criteria continue to apply primarily to patients experiencing a typical clinically isolated syndrome, define what is needed to fulfil dissemination in time and space of lesions in the CNS, and stress the need for no better explanation for the presentation.
Abstract: The 2010 McDonald criteria for the diagnosis of multiple sclerosis are widely used in research and clinical practice. Scientific advances in the past 7 years suggest that they might no longer provide the most up-to-date guidance for clinicians and researchers. The International Panel on Diagnosis of Multiple Sclerosis reviewed the 2010 McDonald criteria and recommended revisions. The 2017 McDonald criteria continue to apply primarily to patients experiencing a typical clinically isolated syndrome, define what is needed to fulfil dissemination in time and space of lesions in the CNS, and stress the need for no better explanation for the presentation. The following changes were made: in patients with a typical clinically isolated syndrome and clinical or MRI demonstration of dissemination in space, the presence of CSF-specific oligoclonal bands allows a diagnosis of multiple sclerosis; symptomatic lesions can be used to demonstrate dissemination in space or time in patients with supratentorial, infratentorial, or spinal cord syndrome; and cortical lesions can be used to demonstrate dissemination in space. Research to further refine the criteria should focus on optic nerve involvement, validation in diverse populations, and incorporation of advanced imaging, neurophysiological, and body fluid markers.

Journal ArticleDOI
30 Jan 2015-Science
TL;DR: An antisolvent vapor-assisted crystallization approach is reported that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters, which enabled a detailed characterization of their optical and charge transport characteristics.
Abstract: The fundamental properties and ultimate performance limits of organolead trihalide MAPbX3 (MA = CH3NH3(+); X = Br(-) or I(-)) perovskites remain obscured by extensive disorder in polycrystalline MAPbX3 films. We report an antisolvent vapor-assisted crystallization approach that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters. These large single crystals enabled a detailed characterization of their optical and charge transport characteristics. We observed exceptionally low trap-state densities on the order of 10(9) to 10(10) per cubic centimeter in MAPbX3 single crystals (comparable to the best photovoltaic-quality silicon) and charge carrier diffusion lengths exceeding 10 micrometers. These results were validated with density functional theory calculations.

Journal ArticleDOI
19 Apr 2016-JAMA
TL;DR: This guideline is intended to improve communication about benefits and risks of opioids for chronic pain, improve safety and effectiveness of pain treatment, and reduce risks associated with long-term opioid therapy.
Abstract: Importance Primary care clinicians find managing chronic pain challenging. Evidence of long-term efficacy of opioids for chronic pain is limited. Opioid use is associated with serious risks, including opioid use disorder and overdose. Objective To provide recommendations about opioid prescribing for primary care clinicians treating adult patients with chronic pain outside of active cancer treatment, palliative care, and end-of-life care. Process The Centers for Disease Control and Prevention (CDC) updated a 2014 systematic review on effectiveness and risks of opioids and conducted a supplemental review on benefits and harms, values and preferences, and costs. CDC used the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework to assess evidence type and determine the recommendation category. Evidence Synthesis Evidence consisted of observational studies or randomized clinical trials with notable limitations, characterized as low quality using GRADE methodology. Meta-analysis was not attempted due to the limited number of studies, variability in study designs and clinical heterogeneity, and methodological shortcomings of studies. No study evaluated long-term (≥1 year) benefit of opioids for chronic pain. Opioids were associated with increased risks, including opioid use disorder, overdose, and death, with dose-dependent effects. Recommendations There are 12 recommendations. Of primary importance, nonopioid therapy is preferred for treatment of chronic pain. Opioids should be used only when benefits for pain and function are expected to outweigh risks. Before starting opioids, clinicians should establish treatment goals with patients and consider how opioids will be discontinued if benefits do not outweigh risks. When opioids are used, clinicians should prescribe the lowest effective dosage, carefully reassess benefits and risks when considering increasing dosage to 50 morphine milligram equivalents or more per day, and avoid concurrent opioids and benzodiazepines whenever possible. Clinicians should evaluate benefits and harms of continued opioid therapy with patients every 3 months or more frequently and review prescription drug monitoring program data, when available, for high-risk combinations or dosages. For patients with opioid use disorder, clinicians should offer or arrange evidence-based treatment, such as medication-assisted treatment with buprenorphine or methadone. Conclusions and Relevance The guideline is intended to improve communication about benefits and risks of opioids for chronic pain, improve safety and effectiveness of pain treatment, and reduce risks associated with long-term opioid therapy.

Journal ArticleDOI
TL;DR: The process of developing specific advice for the reporting of systematic reviews that incorporate network meta-analyses is described, and the guidance generated from this process is presented.
Abstract: The PRISMA statement is a reporting guideline designed to improve the completeness of reporting of systematic reviews and meta-analyses. Authors have used this guideline worldwide to prepare their reviews for publication. In the past, these reports typically compared 2 treatment alternatives. With the evolution of systematic reviews that compare multiple treatments, some of them only indirectly, authors face novel challenges for conducting and reporting their reviews. This extension of the PRISMA (Preferred Reporting Items for Systematic Reviews and Metaanalyses) statement was developed specifically to improve the reporting of systematic reviews incorporating network meta-analyses.

Posted Content
François Chollet1
TL;DR: Xception as mentioned in this paper proposes a novel deep convolutional neural network architecture inspired by Inception, where Inception modules have been replaced with depthwise separable convolutions, which can be interpreted as an Inception module with a maximally large number of towers.
Abstract: We present an interpretation of Inception modules in convolutional neural networks as being an intermediate step in-between regular convolution and the depthwise separable convolution operation (a depthwise convolution followed by a pointwise convolution). In this light, a depthwise separable convolution can be understood as an Inception module with a maximally large number of towers. This observation leads us to propose a novel deep convolutional neural network architecture inspired by Inception, where Inception modules have been replaced with depthwise separable convolutions. We show that this architecture, dubbed Xception, slightly outperforms Inception V3 on the ImageNet dataset (which Inception V3 was designed for), and significantly outperforms Inception V3 on a larger image classification dataset comprising 350 million images and 17,000 classes. Since the Xception architecture has the same number of parameters as Inception V3, the performance gains are not due to increased capacity but rather to a more efficient use of model parameters.


Journal ArticleDOI
TL;DR: Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future as mentioned in this paper, which will be useful tools for exploring many-body quantum physics, and may have other useful applications.
Abstract: Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of today's classical digital computers, but noise in quantum gates will limit the size of quantum circuits that can be executed reliably. NISQ devices will be useful tools for exploring many-body quantum physics, and may have other useful applications, but the 100-qubit quantum computer will not change the world right away --- we should regard it as a significant step toward the more powerful quantum technologies of the future. Quantum technologists should continue to strive for more accurate quantum gates and, eventually, fully fault-tolerant quantum computing.

Journal ArticleDOI
TL;DR: Among patients with anterior circulation stroke who could be treated within 8 hours after symptom onset, stent retriever thrombectomy reduced the severity of post-stroke disability and increased the rate of functional independence.
Abstract: Methods During a 2-year period at four centers in Catalonia, Spain, we randomly assigned 206 patients who could be treated within 8 hours after the onset of symptoms of acute ischemic stroke to receive either medical therapy (including intravenous alteplase when eligible) and endovascular therapy with the Solitaire stent retriever (thrombectomy group) or medical therapy alone (control group). All patients had confirmed proximal anterior circulation occlusion and the absence of a large infarct on neuroimaging. In all study patients, the use of alteplase either did not achieve revascularization or was contraindicated. The primary outcome was the severity of global disability at 90 days, as measured on the modified Rankin scale (ranging from 0 [no symptoms] to 6 [death]). Although the maximum planned sample size was 690, enrollment was halted early because of loss of equipoise after positive results for thrombectomy were reported from other similar trials. Results Thrombectomy reduced the severity of disability over the range of the modified Rankin scale (adjusted odds ratio for improvement of 1 point, 1.7; 95% confidence interval [CI], 1.05 to 2.8) and led to higher rates of functional independence (a score of 0 to 2) at 90 days (43.7% vs. 28.2%; adjusted odds ratio, 2.1; 95% CI, 1.1 to 4.0). At 90 days, the rates of symptomatic intracranial hemorrhage were 1.9% in both the thrombectomy group and the control group (P = 1.00), and rates of death were 18.4% and 15.5%, respectively (P = 0.60). Registry data indicated that only eight patients who met the eligibility criteria were treated outside the trial at participating hospitals. Conclusions Among patients with anterior circulation stroke who could be treated within 8 hours after symptom onset, stent retriever thrombectomy reduced the severity of poststroke disability and increased the rate of functional independence. (Funded by Fundacio Ictus Malaltia Vascular through an unrestricted grant from Covidien and others; REVASCAT ClinicalTrials.gov number, NCT01692379.)

Posted Content
TL;DR: This work proposes a method to pre-train a smaller general-purpose language representation model, called DistilBERT, which can be fine-tuned with good performances on a wide range of tasks like its larger counterparts, and introduces a triple loss combining language modeling, distillation and cosine-distance losses.
Abstract: As Transfer Learning from large-scale pre-trained models becomes more prevalent in Natural Language Processing (NLP), operating these large models in on-the-edge and/or under constrained computational training or inference budgets remains challenging. In this work, we propose a method to pre-train a smaller general-purpose language representation model, called DistilBERT, which can then be fine-tuned with good performances on a wide range of tasks like its larger counterparts. While most prior work investigated the use of distillation for building task-specific models, we leverage knowledge distillation during the pre-training phase and show that it is possible to reduce the size of a BERT model by 40%, while retaining 97% of its language understanding capabilities and being 60% faster. To leverage the inductive biases learned by larger models during pre-training, we introduce a triple loss combining language modeling, distillation and cosine-distance losses. Our smaller, faster and lighter model is cheaper to pre-train and we demonstrate its capabilities for on-device computations in a proof-of-concept experiment and a comparative on-device study.

Journal ArticleDOI
TL;DR: The Hybrid Single Particle Lagrangian Integrated Trajectory model (HYSPLIT) as mentioned in this paper is one of the most widely used models for atmospheric trajectory and dispersion calculations.
Abstract: The Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT), developed by NOAA’s Air Resources Laboratory, is one of the most widely used models for atmospheric trajectory and dispersion calculations. We present the model’s historical evolution over the last 30 years from simple hand-drawn back trajectories to very sophisticated computations of transport, mixing, chemical transformation, and deposition of pollutants and hazardous materials. We highlight recent applications of the HYSPLIT modeling system, including the simulation of atmospheric tracer release experiments, radionuclides, smoke originated from wild fires, volcanic ash, mercury, and wind-blown dust.

Journal ArticleDOI
TL;DR: This study conducted a retrospective multicenter study of 68 death cases and 82 discharged cases with laboratory-confirmed infection of SARS-CoV-2 and confirmed that some patients died of fulminant myocarditis, which is characterized by a rapid progress and a severe state of illness.
Abstract: Dear Editor, The rapid emergence of COVID-19 in Wuhan city, Hubei Province, China, has resulted in thousands of deaths [1]. Many infected patients, however, presented mild flu-like symptoms and quickly recover [2]. To effectively prioritize resources for patients with the highest risk, we identified clinical predictors of mild and severe patient outcomes. Using the database of Jin Yin-tan Hospital and Tongji Hospital, we conducted a retrospective multicenter study of 68 death cases (68/150, 45%) and 82 discharged cases (82/150, 55%) with laboratory-confirmed infection of SARS-CoV-2. Patients met the discharge criteria if they had no fever for at least 3 days, significantly improved respiratory function, and had negative SARS-CoV-2 laboratory test results twice in succession. Case data included demographics, clinical characteristics, laboratory results, treatment options and outcomes. For statistical analysis, we represented continuous measurements as means (SDs) or as medians (IQRs) which compared with Student’s t test or the Mann–Whitney–Wilcoxon test. Categorical variables were expressed as numbers (%) and compared by the χ2 test or Fisher’s exact test. The distribution of the enrolled patients’ age is shown in Fig. 1a. There was a significant difference in age between the death group and the discharge group (p < 0.001) but no difference in the sex ratio (p = 0.43). A total of 63% (43/68) of patients in the death group and 41% (34/82) in the discharge group had underlying diseases (p = 0.0069). It should be noted that patients with cardiovascular diseases have a significantly increased risk of death when they are infected with SARS-CoV-2 (p < 0.001). A total of 16% (11/68) of the patients in the death group had secondary infections, and 1% (1/82) of the patients in the discharge group had secondary infections (p = 0.0018). Laboratory results showed that there were significant differences in white blood cell counts, absolute values of lymphocytes, platelets, albumin, total bilirubin, blood urea nitrogen, blood creatinine, myoglobin, cardiac troponin, C-reactive protein (CRP) and interleukin-6 (IL-6) between the two groups (Fig. 1b and Supplementary Table 1). The survival times of the enrolled patients in the death group were analyzed. The distribution of survival time from disease onset to death showed two peaks, with the first one at approximately 14 days (22 cases) and the second one at approximately 22 days (17 cases) (Fig. 1c). An analysis of the cause of death was performed. Among the 68 fatal cases, 36 patients (53%) died of respiratory failure, five patients (7%) with myocardial damage died of circulatory failure, 22 patients (33%) died of both, and five remaining died of an unknown cause (Fig. 1d). Based on the analysis of the clinical data, we confirmed that some patients died of fulminant myocarditis. In this study, we first reported that the infection of SARS-CoV-2 may cause fulminant myocarditis. Given that fulminant myocarditis is characterized by a rapid progress and a severe state of illness [3], our results should alert physicians to pay attention not only to the symptoms of respiratory dysfunction but also the symptoms of cardiac injury. *Correspondence: songsingsjx@sina.com 4 Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China Full author information is available at the end of the article

Book ChapterDOI
08 Oct 2016
TL;DR: This work introduces a novel convolutional network architecture for the task of human pose estimation that is described as a “stacked hourglass” network based on the successive steps of pooling and upsampling that are done to produce a final set of predictions.
Abstract: This work introduces a novel convolutional network architecture for the task of human pose estimation. Features are processed across all scales and consolidated to best capture the various spatial relationships associated with the body. We show how repeated bottom-up, top-down processing used in conjunction with intermediate supervision is critical to improving the performance of the network. We refer to the architecture as a “stacked hourglass” network based on the successive steps of pooling and upsampling that are done to produce a final set of predictions. State-of-the-art results are achieved on the FLIC and MPII benchmarks outcompeting all recent methods.

Journal ArticleDOI
TL;DR: Cronbach's alpha is a statistic commonly quoted by authors to demonstrate that tests and scales that have been constructed or adopted for research projects are fit for purpose as discussed by the authors, which is a measure of reliability.
Abstract: Cronbach’s alpha is a statistic commonly quoted by authors to demonstrate that tests and scales that have been constructed or adopted for research projects are fit for purpose. Cronbach’s alpha is regularly adopted in studies in science education: it was referred to in 69 different papers published in 4 leading science education journals in a single year (2015)—usually as a measure of reliability. This article explores how this statistic is used in reporting science education research and what it represents. Authors often cite alpha values with little commentary to explain why they feel this statistic is relevant and seldom interpret the result for readers beyond citing an arbitrary threshold for an acceptable value. Those authors who do offer readers qualitative descriptors interpreting alpha values adopt a diverse and seemingly arbitrary terminology. More seriously, illustrative examples from the science education literature demonstrate that alpha may be acceptable even when there are recognised problems with the scales concerned. Alpha is also sometimes inappropriately used to claim an instrument is unidimensional. It is argued that a high value of alpha offers limited evidence of the reliability of a research instrument, and that indeed a very high value may actually be undesirable when developing a test of scientific knowledge or understanding. Guidance is offered to authors reporting, and readers evaluating, studies that present Cronbach’s alpha statistic as evidence of instrument quality.

Proceedings Article
19 Jun 2019
TL;DR: The authors proposes XLNet, a generalized autoregressive pretraining method that enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and overcomes the limitations of BERT The authors.
Abstract: With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, under comparable experiment setting, XLNet outperforms BERT on 20 tasks, often by a large margin, including question answering, natural language inference, sentiment analysis, and document ranking.