scispace - formally typeset
Search or ask a question
Browse all papers

Posted Content
TL;DR: CheXpert as discussed by the authors is a large dataset of chest radiographs of 65,240 patients annotated by 3 board-certified radiologists with 14 observations in radiology reports, capturing uncertainties inherent in radiograph interpretation and different approaches to using the uncertainty labels for training convolutional neural networks that output the probability of these observations given the available frontal and lateral radiographs.
Abstract: Large, labeled datasets have driven deep learning methods to achieve expert-level performance on a variety of medical imaging tasks. We present CheXpert, a large dataset that contains 224,316 chest radiographs of 65,240 patients. We design a labeler to automatically detect the presence of 14 observations in radiology reports, capturing uncertainties inherent in radiograph interpretation. We investigate different approaches to using the uncertainty labels for training convolutional neural networks that output the probability of these observations given the available frontal and lateral radiographs. On a validation set of 200 chest radiographic studies which were manually annotated by 3 board-certified radiologists, we find that different uncertainty approaches are useful for different pathologies. We then evaluate our best model on a test set composed of 500 chest radiographic studies annotated by a consensus of 5 board-certified radiologists, and compare the performance of our model to that of 3 additional radiologists in the detection of 5 selected pathologies. On Cardiomegaly, Edema, and Pleural Effusion, the model ROC and PR curves lie above all 3 radiologist operating points. We release the dataset to the public as a standard benchmark to evaluate performance of chest radiograph interpretation models. The dataset is freely available at this https URL .

783 citations


Proceedings ArticleDOI
01 Mar 2019
TL;DR: In Mask Scoring R-CNN as mentioned in this paper, a mask IoU is used to calibrate the misalignment between mask quality and mask score, and improves instance segmentation performance by prioritizing more accurate mask predictions during COCO AP evaluation.
Abstract: Letting a deep network be aware of the quality of its own predictions is an interesting yet important problem. In the task of instance segmentation, the confidence of instance classification is used as mask quality score in most instance segmentation frameworks. However, the mask quality, quantified as the IoU between the instance mask and its ground truth, is usually not well correlated with classification score. In this paper, we study this problem and propose Mask Scoring R-CNN which contains a network block to learn the quality of the predicted instance masks. The proposed network block takes the instance feature and the corresponding predicted mask together to regress the mask IoU. The mask scoring strategy calibrates the misalignment between mask quality and mask score, and improves instance segmentation performance by prioritizing more accurate mask predictions during COCO AP evaluation. By extensive evaluations on the COCO dataset, Mask Scoring R-CNN brings consistent and noticeable gain with different models and outperforms the state-of-the-art Mask R-CNN. We hope our simple and effective approach will provide a new direction for improving instance segmentation. The source code of our method is available at \url{https://github.com/zjhuang22/maskscoring_rcnn}.

783 citations


Posted Content
TL;DR: Automatic differentiation (AD) is a family of techniques similar to backpropagation for efficiently and accurately evaluating derivatives of numeric functions expressed as computer programs as discussed by the authors, which is a small but established field with applications in areas including computational fluid dynamics, atmospheric sciences, and engineering design optimization.
Abstract: Derivatives, mostly in the form of gradients and Hessians, are ubiquitous in machine learning. Automatic differentiation (AD), also called algorithmic differentiation or simply "autodiff", is a family of techniques similar to but more general than backpropagation for efficiently and accurately evaluating derivatives of numeric functions expressed as computer programs. AD is a small but established field with applications in areas including computational fluid dynamics, atmospheric sciences, and engineering design optimization. Until very recently, the fields of machine learning and AD have largely been unaware of each other and, in some cases, have independently discovered each other's results. Despite its relevance, general-purpose AD has been missing from the machine learning toolbox, a situation slowly changing with its ongoing adoption under the names "dynamic computational graphs" and "differentiable programming". We survey the intersection of AD and machine learning, cover applications where AD has direct relevance, and address the main implementation techniques. By precisely defining the main differentiation techniques and their interrelationships, we aim to bring clarity to the usage of the terms "autodiff", "automatic differentiation", and "symbolic differentiation" as these are encountered more and more in machine learning settings.

782 citations


Journal ArticleDOI
04 Nov 2016-Science
TL;DR: This work reviews how non-neuronal cells interact with nociceptive neurons by secreting neuroactive signaling molecules that modulate pain and discusses new therapeutic strategies to control neuroinflammation for the prevention and treatment of chronic pain.
Abstract: Acute pain is protective and a cardinal feature of inflammation. Chronic pain after arthritis, nerve injury, cancer, and chemotherapy is associated with chronic neuroinflammation, a local inflammation in the peripheral or central nervous system. Accumulating evidence suggests that non-neuronal cells such as immune cells, glial cells, keratinocytes, cancer cells, and stem cells play active roles in the pathogenesis and resolution of pain. We review how non-neuronal cells interact with nociceptive neurons by secreting neuroactive signaling molecules that modulate pain. Recent studies also suggest that bacterial infections regulate pain through direct actions on sensory neurons, and specific receptors are present in nociceptors to detect danger signals from infections. We also discuss new therapeutic strategies to control neuroinflammation for the prevention and treatment of chronic pain.

782 citations


Proceedings ArticleDOI
06 Apr 2019
TL;DR: This paper explored and released BERT models for clinical text: one for generic clinical text and another for discharge summaries specifically, and demonstrated that using a domain-specific model yields performance improvements on 3/5 clinical NLP tasks, establishing a new state-of-the-art on the MedNLI dataset.
Abstract: Contextual word embedding models such as ELMo and BERT have dramatically improved performance for many natural language processing (NLP) tasks in recent months. However, these models have been minimally explored on specialty corpora, such as clinical text; moreover, in the clinical domain, no publicly-available pre-trained BERT models yet exist. In this work, we address this need by exploring and releasing BERT models for clinical text: one for generic clinical text and another for discharge summaries specifically. We demonstrate that using a domain-specific model yields performance improvements on 3/5 clinical NLP tasks, establishing a new state-of-the-art on the MedNLI dataset. We find that these domain-specific models are not as performant on 2 clinical de-identification tasks, and argue that this is a natural consequence of the differences between de-identified source text and synthetically non de-identified task text.

782 citations


Journal ArticleDOI
08 Jul 2016-Science
TL;DR: The use of reticular chemistry for the fabrication of a chemically stable fluorinated metal-organic framework (MOF) material (NbOFFIVE-1-Ni), which resulted in the selective molecular exclusion of propane from propylene at atmospheric pressure, as evidenced through multiple cyclic mixed-gas adsorption and calorimetric studies.
Abstract: The chemical industry is dependent on the olefin/paraffin separation, which is mainly accomplished by using energy-intensive processes. We report the use of reticular chemistry for the fabrication of a chemically stable fluorinated metal-organic framework (MOF) material (NbOFFIVE-1-Ni, also referred to as KAUST-7). The bridging of Ni(II)-pyrazine square-grid layers with (NbOF5)2– pillars afforded the construction of a three-dimensional MOF, enclosing a periodic array of fluoride anions in contracted square-shaped channels. The judiciously selected bulkier (NbOF5)2– caused the looked-for hindrance of the previously free-rotating pyrazine moieties, delimiting the pore system and dictating the pore aperture size and its maximum opening. The restricted MOF window resulted in the selective molecular exclusion of propane from propylene at atmospheric pressure, as evidenced through multiple cyclic mixed-gas adsorption and calorimetric studies.

782 citations


Proceedings Article
03 Dec 2018
TL;DR: DiffPool as discussed by the authors learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer.
Abstract: Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark datasets.

782 citations


Journal ArticleDOI
TL;DR: A general introduction to biosensors and biosensing technologies is given, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available.
Abstract: Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available.

782 citations


Journal ArticleDOI
TL;DR: The use of erdafitinib was associated with an objective tumor response in 40% of previously treated patients who had locally advanced and unresectable or metastatic urothelial carcinoma with FGFR alterations.
Abstract: Background Alterations in the gene encoding fibroblast growth factor receptor (FGFR) are common in urothelial carcinoma and may be associated with lower sensitivity to immune interventions...

782 citations


Journal ArticleDOI
TL;DR: A large number of head and neck cancers are now related to human papillomavirus infection rather than tobacco and alcohol, and the number of cases is expected to increase in the coming years.
Abstract: Head and Neck Cancer Most head and neck cancers (73% in the United States) are now related to human papillomavirus infection rather than tobacco and alcohol. Primary cancers are largely squamous-ce...

782 citations


Posted Content
TL;DR: In this paper, the authors proposed a method for offline training of neural networks that can track novel objects at test-time at 100 fps, which is significantly faster than previous methods that use neural networks for tracking, which are typically very slow to run and not practical for realtime applications.
Abstract: Machine learning techniques are often used in computer vision due to their ability to leverage large amounts of training data to improve performance. Unfortunately, most generic object trackers are still trained from scratch online and do not benefit from the large number of videos that are readily available for offline training. We propose a method for offline training of neural networks that can track novel objects at test-time at 100 fps. Our tracker is significantly faster than previous methods that use neural networks for tracking, which are typically very slow to run and not practical for real-time applications. Our tracker uses a simple feed-forward network with no online training required. The tracker learns a generic relationship between object motion and appearance and can be used to track novel objects that do not appear in the training set. We test our network on a standard tracking benchmark to demonstrate our tracker's state-of-the-art performance. Further, our performance improves as we add more videos to our offline training set. To the best of our knowledge, our tracker is the first neural-network tracker that learns to track generic objects at 100 fps.

Journal ArticleDOI
01 May 2016-Gut
TL;DR: The differences between PPI users and non-users observed in this study are consistently associated with changes towards a less healthy gut microbiome, in line with known changes that predispose to C. difficile infections.
Abstract: Background and aims Proton pump inhibitors (PPIs) are among the top 10 most widely used drugs in the world. PPI use has been associated with an increased risk of enteric infections, most notably Clostridium difficile. The gut microbiome plays an important role in enteric infections, by resisting or promoting colonisation by pathogens. In this study, we investigated the influence of PPI use on the gut microbiome. Methods The gut microbiome composition of 1815 individuals, spanning three cohorts, was assessed by tag sequencing of the 16S rRNA gene. The difference in microbiota composition in PPI users versus non-users was analysed separately in each cohort, followed by a meta-analysis. Results 211 of the participants were using PPIs at the moment of stool sampling. PPI use is associated with a significant decrease in Shannon9s diversity and with changes in 20% of the bacterial taxa (false discovery rate Rothia (p=9.8×10 −38 ). In PPI users we observed a significant increase in bacteria: genera Enterococcus , Streptococcus , Staphylococcus and the potentially pathogenic species Escherichia coli . Conclusions The differences between PPI users and non-users observed in this study are consistently associated with changes towards a less healthy gut microbiome. These differences are in line with known changes that predispose to C. difficile infections and can potentially explain the increased risk of enteric infections in PPI users. On a population level, the effects of PPI are more prominent than the effects of antibiotics or other commonly used drugs.

Journal ArticleDOI
TL;DR: Recommendations for prevention and monitoring of cardiac dysfunction in survivors of adult-onset cancers were developed by an expert panel with multidisciplinary representation using a systematic review of meta-analyses, randomized clinical trials, observational studies, and clinical experience.
Abstract: Purpose Cardiac dysfunction is a serious adverse effect of certain cancer-directed therapies that can interfere with the efficacy of treatment, decrease quality of life, or impact the actual survival of the patient with cancer. The purpose of this effort was to develop recommendations for prevention and monitoring of cardiac dysfunction in survivors of adult-onset cancers. Methods Recommendations were developed by an expert panel with multidisciplinary representation using a systematic review (1996 to 2016) of meta-analyses, randomized clinical trials, observational studies, and clinical experience. Study quality was assessed using established methods, per study design. The guideline recommendations were crafted in part using the Guidelines Into Decision Support methodology. Results A total of 104 studies met eligibility criteria and compose the evidentiary basis for the recommendations. The strength of the recommendations in these guidelines is based on the quality, amount, and consistency of the evidence and the balance between benefits and harms. Recommendations It is important for health care providers to initiate the discussion regarding the potential for cardiac dysfunction in individuals in whom the risk is sufficiently high before beginning therapy. Certain higher risk populations of survivors of cancer may benefit from prevention and screening strategies implemented during cancer-directed therapies. Clinical suspicion for cardiac disease should be high and threshold for cardiac evaluation should be low in any survivor who has received potentially cardiotoxic therapy. For certain higher risk survivors of cancer, routine surveillance with cardiac imaging may be warranted after completion of cancer-directed therapy, so that appropriate interventions can be initiated to halt or even reverse the progression of cardiac dysfunction.

Journal ArticleDOI
TL;DR: In this article, the power of the Gaia DR2 in studying many fine structures of the Hertzsprung-Russell diagram (HRD) was highlighted, depending in particular on stellar population selections.
Abstract: We highlight the power of the Gaia DR2 in studying many fine structures of the Hertzsprung-Russell diagram (HRD). Gaia allows us to present many different HRDs, depending in particular on stellar population selections. We do not aim here for completeness in terms of types of stars or stellar evolutionary aspects. Instead, we have chosen several illustrative examples. We describe some of the selections that can be made in Gaia DR2 to highlight the main structures of the Gaia HRDs. We select both field and cluster (open and globular) stars, compare the observations with previous classifications and with stellar evolutionary tracks, and we present variations of the Gaia HRD with age, metallicity, and kinematics. Late stages of stellar evolution such as hot subdwarfs, post-AGB stars, planetary nebulae, and white dwarfs are also analysed, as well as low-mass brown dwarf objects. The Gaia HRDs are unprecedented in both precision and coverage of the various Milky Way stellar populations and stellar evolutionary phases. Many fine structures of the HRDs are presented. The clear split of the white dwarf sequence into hydrogen and helium white dwarfs is presented for the first time in an HRD. The relation between kinematics and the HRD is nicely illustrated. Two different populations in a classical kinematic selection of the halo are unambiguously identified in the HRD. Membership and mean parameters for a selected list of open clusters are provided. They allow drawing very detailed cluster sequences, highlighting fine structures, and providing extremely precise empirical isochrones that will lead to more insight in stellar physics. Gaia DR2 demonstrates the potential of combining precise astrometry and photometry for large samples for studies in stellar evolution and stellar population and opens an entire new area for HRD-based studies.

Journal ArticleDOI
TL;DR: A versatile new input encoding that permits the use of a smaller network without sacrificing quality, thus significantly reducing the number of floating point and memory access operations is introduced, enabling training of high-quality neural graphics primitives in a matter of seconds, and rendering in tens of milliseconds at a resolution of 1920×1080.
Abstract: Neural graphics primitives, parameterized by fully connected neural networks, can be costly to train and evaluate. We reduce this cost with a versatile new input encoding that permits the use of a smaller network without sacrificing quality, thus significantly reducing the number of floating point and memory access operations: a small neural network is augmented by a multiresolution hash table of trainable feature vectors whose values are optimized through stochastic gradient descent. The multiresolution structure allows the network to disambiguate hash collisions, making for a simple architecture that is trivial to parallelize on modern GPUs. We leverage this parallelism by implementing the whole system using fully-fused CUDA kernels with a focus on minimizing wasted bandwidth and compute operations. We achieve a combined speedup of several orders of magnitude, enabling training of high-quality neural graphics primitives in a matter of seconds, and rendering in tens of milliseconds at a resolution of 1920×1080.

Journal ArticleDOI
TL;DR: The aim of this review is to present a clear and updated description of the effects of the SCFAs derived from bacteria on host immune system, as well as the molecular mechanisms involved on them.
Abstract: Short-chain fatty acids (SCFAs) are bacterial fermentation products, which are chemically composed by a carboxylic acid moiety and a small hydrocarbon chain. Among them, acetic, propionic and butyric acids are the most studied, presenting, respectively, two, three and four carbons in their chemical structure. These metabolites are found in high concentrations in the intestinal tract, from where they are uptaken by intestinal epithelial cells (IECs). The SCFAs are partially used as a source of ATP by these cells. In addition, these molecules act as a link between the microbiota and the immune system by modulating different aspects of IECs and leukocytes development, survival and function through activation of G protein coupled receptors (FFAR2, FFAR3, GPR109a and Olfr78) and by modulation of the activity of enzymes and transcription factors including the histone acetyltransferase and deacetylase and the hypoxia-inducible factor. Considering that, it is not a surprise, the fact that these molecules and/or their targets are suggested to have an important role in the maintenance of intestinal homeostasis and that changes in components of this system are associated with pathological conditions including inflammatory bowel disease, obesity and others. The aim of this review is to present a clear and updated description of the effects of the SCFAs derived from bacteria on host immune system, as well as the molecular mechanisms involved on them.

Journal ArticleDOI
TL;DR: In this article, a general framework for smoothing parameter estimation for models with regular likelihoods constructed in terms of unknown smooth functions of covariates is discussed, where the smoothing parameters controlling the extent of penalization are estimated by Laplace approximate marginal likelihood.
Abstract: This article discusses a general framework for smoothing parameter estimation for models with regular likelihoods constructed in terms of unknown smooth functions of covariates. Gaussian random effects and parametric terms may also be present. By construction the method is numerically stable and convergent, and enables smoothing parameter uncertainty to be quantified. The latter enables us to fix a well known problem with AIC for such models, thereby improving the range of model selection tools available. The smooth functions are represented by reduced rank spline like smoothers, with associated quadratic penalties measuring function smoothness. Model estimation is by penalized likelihood maximization, where the smoothing parameters controlling the extent of penalization are estimated by Laplace approximate marginal likelihood. The methods cover, for example, generalized additive models for nonexponential family responses (e.g., beta, ordered categorical, scaled t distribution, negative binomial a...

Journal ArticleDOI
TL;DR: This survey makes an exhaustive review on the state-of-the-art research efforts on mobile edge networks, including definition, architecture, and advantages, and presents a comprehensive survey of issues on computing, caching, and communication techniques at the network edge.
Abstract: As the explosive growth of smart devices and the advent of many new applications, traffic volume has been growing exponentially. The traditional centralized network architecture cannot accommodate such user demands due to heavy burden on the backhaul links and long latency. Therefore, new architectures, which bring network functions and contents to the network edge, are proposed, i.e., mobile edge computing and caching. Mobile edge networks provide cloud computing and caching capabilities at the edge of cellular networks. In this survey, we make an exhaustive review on the state-of-the-art research efforts on mobile edge networks. We first give an overview of mobile edge networks, including definition, architecture, and advantages. Next, a comprehensive survey of issues on computing, caching, and communication techniques at the network edge is presented. The applications and use cases of mobile edge networks are discussed. Subsequently, the key enablers of mobile edge networks, such as cloud technology, SDN/NFV, and smart devices are discussed. Finally, open research challenges and future directions are presented as well.

Journal ArticleDOI
TL;DR: In this paper, the authors explored nonlinear transitions in the Arctic feedbacks and their subsequent impacts on the global climate and economy under the Paris Agreement scenarios, and found an important contribution to warming which leads to additional economic losses from climate change.
Abstract: Arctic feedbacks accelerate climate change through carbon releases from thawing permafrost and higher solar absorption from reductions in the surface albedo, following loss of sea ice and land snow. Here, we include dynamic emulators of complex physical models in the integrated assessment model PAGE-ICE to explore nonlinear transitions in the Arctic feedbacks and their subsequent impacts on the global climate and economy under the Paris Agreement scenarios. The permafrost feedback is increasingly positive in warmer climates, while the albedo feedback weakens as the ice and snow melt. Combined, these two factors lead to significant increases in the mean discounted economic effect of climate change: +4.0% ($24.8 trillion) under the 1.5 °C scenario, +5.5% ($33.8 trillion) under the 2 °C scenario, and +4.8% ($66.9 trillion) under mitigation levels consistent with the current national pledges. Considering the nonlinear Arctic feedbacks makes the 1.5 °C target marginally more economically attractive than the 2 °C target, although both are statistically equivalent. Nonlinear transitions in permafrost carbon feedback and surface albedo feedback have largely been excluded from climate policy studies. Here the authors modelled the dynamics of the two nonlinear feedbacks and the associated uncertainty, and found an important contribution to warming which leads to additional economic losses from climate change.

Journal ArticleDOI
13 Jan 2015
TL;DR: In this paper, the authors studied the environmental instability of mechanically exfoliated few-layer black phosphorus (BP) flakes and found that long term exposure to ambient conditions results in a layer-by-layer etching process of BP flakes.
Abstract: We study the environmental instability of mechanically exfoliated few-layer black phosphorus (BP). From continuous measurements of flake topography over several days, we observe an increase of over 200% in volume due to the condensation of moisture from air. We find that long term exposure to ambient conditions results in a layer-by-layer etching process of BP flakes. Interestingly, flakes can be etched down to single layer (phosphorene) thicknesses. BPʼs strong affinity for water greatly modifies the performance of fabricated field-effect transistors (FETs) measured in ambient conditions. Upon exposure to air, we differentiate between two timescales for changes in BP FET transfer characteristics: a short timescale (minutes) in which a shift in the threshold voltage occurs due to physisorbed oxygen and nitrogen, and a long timescale (hours) in which strong p-type doping occurs from water absorption. Continuous measurements of BP FETs in air reveal eventual degradation and break-down of the channel material after several days due to the layer-by-layer etching process.

Journal ArticleDOI
TL;DR: The succession of genetic alterations during melanoma progression was defined, showing distinct evolutionary trajectories for different melanoma subtypes, and an intermediate category of melanocytic neoplasia was identified, characterized by the presence of more than one pathogenic genetic alteration and distinctive histopathological features.
Abstract: BackgroundThe pathogenic mutations in melanoma have been largely catalogued; however, the order of their occurrence is not known. MethodsWe sequenced 293 cancer-relevant genes in 150 areas of 37 primary melanomas and their adjacent precursor lesions. The histopathological spectrum of these areas included unequivocally benign lesions, intermediate lesions, and intraepidermal or invasive melanomas. ResultsPrecursor lesions were initiated by mutations of genes that are known to activate the mitogen-activated protein kinase pathway. Unequivocally benign lesions harbored BRAF V600E mutations exclusively, whereas those categorized as intermediate were enriched for NRAS mutations and additional driver mutations. A total of 77% of areas of intermediate lesions and melanomas in situ harbored TERT promoter mutations, a finding that indicates that these mutations are selected at an unexpectedly early stage of the neoplastic progression. Biallelic inactivation of CDKN2A emerged exclusively in invasive melanomas. PTEN...

Proceedings ArticleDOI
TL;DR: UnitBox as mentioned in this paper proposes an intersection over union (IoU$) loss function for bounding box prediction, which regresses the four bounds of a predicted box as a whole unit.
Abstract: In present object detection systems, the deep convolutional neural networks (CNNs) are utilized to predict bounding boxes of object candidates, and have gained performance advantages over the traditional region proposal methods. However, existing deep CNN methods assume the object bounds to be four independent variables, which could be regressed by the $\ell_2$ loss separately. Such an oversimplified assumption is contrary to the well-received observation, that those variables are correlated, resulting to less accurate localization. To address the issue, we firstly introduce a novel Intersection over Union ($IoU$) loss function for bounding box prediction, which regresses the four bounds of a predicted box as a whole unit. By taking the advantages of $IoU$ loss and deep fully convolutional networks, the UnitBox is introduced, which performs accurate and efficient localization, shows robust to objects of varied shapes and scales, and converges fast. We apply UnitBox on face detection task and achieve the best performance among all published methods on the FDDB benchmark.

Journal ArticleDOI
13 Dec 2016-JAMA
TL;DR: Among patients with angiographic coronary disease treated with statins, addition of evolocumab, compared with placebo, resulted in a greater decrease in PAV after 76 weeks of treatment, and further studies are needed to assess the effects of PCSK9 inhibition on clinical outcomes.
Abstract: Importance Reducing levels of low-density lipoprotein cholesterol (LDL-C) with intensive statin therapy reduces progression of coronary atherosclerosis in proportion to achieved LDL-C levels. Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors produce incremental LDL-C lowering in statin-treated patients; however, the effects of these drugs on coronary atherosclerosis have not been evaluated. Objective To determine the effects of PCSK9 inhibition with evolocumab on progression of coronary atherosclerosis in statin-treated patients. Design, Setting, and Participants The GLAGOV multicenter, double-blind, placebo-controlled, randomized clinical trial (enrollment May 3, 2013, to January 12, 2015) conducted at 197 academic and community hospitals in North America, Europe, South America, Asia, Australia, and South Africa and enrolling 968 patients presenting for coronary angiography. Interventions Participants with angiographic coronary disease were randomized to receive monthly evolocumab (420 mg) (n = 484) or placebo (n = 484) via subcutaneous injection for 76 weeks, in addition to statins. Main Outcomes and Measures The primary efficacy measure was the nominal change in percent atheroma volume (PAV) from baseline to week 78, measured by serial intravascular ultrasonography (IVUS) imaging. Secondary efficacy measures were nominal change in normalized total atheroma volume (TAV) and percentage of patients demonstrating plaque regression. Safety and tolerability were also evaluated. Results Among the 968 treated patients (mean age, 59.8 years [SD, 9.2]; 269 [27.8%] women; mean LDL-C level, 92.5 mg/dL [SD, 27.2]), 846 had evaluable imaging at follow-up. Compared with placebo, the evolocumab group achieved lower mean, time-weighted LDL-C levels (93.0 vs 36.6 mg/dL; difference, −56.5 mg/dL [95% CI, −59.7 to −53.4]; P P 3 with placebo and 5.8 mm 3 with evolocumab (difference, −4.9 mm 3 [95% CI, −7.3 to −2.5]; P P P Conclusions and Relevance Among patients with angiographic coronary disease treated with statins, addition of evolocumab, compared with placebo, resulted in a greater decrease in PAV after 76 weeks of treatment. Further studies are needed to assess the effects of PCSK9 inhibition on clinical outcomes. Trial Registration clinicaltrials.gov Identifier:NCT01813422

Journal ArticleDOI
Phil Lee, Verneri Anttila, Hyejung Won1, Yen-Chen Anne Feng1  +603 moreInstitutions (10)
12 Dec 2019-Cell
TL;DR: Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes.

Journal ArticleDOI
TL;DR: An end-to-end genome assembly of a female Aedes aegypti mosquito, which spreads viral diseases such as yellow fever, dengue, chikungunya, and Zika to humans, is presented and results suggest that synteny is strongly conserved between Ae.
Abstract: We present an end-to-end genome assembly of a female Aedes aegypti mosquito, which spreads viral diseases such as yellow fever, dengue, chikungunya, and Zika to humans. The assembly is based on an earlier genome published in 2007 and improved in 2013. The new assembly has a scaffold N50 of 419Mb, with 96.9% of the ungapped sequence anchored to chromosomes. We used the new assembly to examine the conservation of A. aegypti chromosomes. Our results suggest that synteny is strongly conserved between Ae. aegypti and An. gambiae. Comparison to D. melanogaster highlights the extent to which the identity of entire chromosome arms is preserved across dipterans.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effect of the booster dose on the rate of confirmed coronavirus 2019 disease (Covid-19) and the rates of severe illness.
Abstract: Background On July 30, 2021, the administration of a third (booster) dose of the BNT162b2 messenger RNA vaccine (Pfizer-BioNTech) was approved in Israel for persons who were 60 years of age or older and who had received a second dose of vaccine at least 5 months earlier. Data are needed regarding the effect of the booster dose on the rate of confirmed coronavirus 2019 disease (Covid-19) and the rate of severe illness. Methods We extracted data for the period from July 30 through August 31, 2021, from the Israeli Ministry of Health database regarding 1,137,804 persons who were 60 years of age or older and had been fully vaccinated (i.e., had received two doses of BNT162b2) at least 5 months earlier. In the primary analysis, we compared the rate of confirmed Covid-19 and the rate of severe illness between those who had received a booster injection at least 12 days earlier (booster group) and those who had not received a booster injection (nonbooster group). In a secondary analysis, we evaluated the rate of infection 4 to 6 days after the booster dose as compared with the rate at least 12 days after the booster. In all the analyses, we used Poisson regression after adjusting for possible confounding factors. Results At least 12 days after the booster dose, the rate of confirmed infection was lower in the booster group than in the nonbooster group by a factor of 11.3 (95% confidence interval [CI], 10.4 to 12.3); the rate of severe illness was lower by a factor of 19.5 (95% CI, 12.9 to 29.5). In a secondary analysis, the rate of confirmed infection at least 12 days after vaccination was lower than the rate after 4 to 6 days by a factor of 5.4 (95% CI, 4.8 to 6.1). Conclusions In this study involving participants who were 60 years of age or older and had received two doses of the BNT162b2 vaccine at least 5 months earlier, we found that the rates of confirmed Covid-19 and severe illness were substantially lower among those who received a booster (third) dose of the BNT162b2 vaccine.

Proceedings ArticleDOI
18 Jun 2018
TL;DR: The Room-to-Room (R2R) dataset as mentioned in this paper provides a large-scale reinforcement learning environment based on real imagery for visually-grounded natural language navigation in real buildings.
Abstract: A robot that can carry out a natural-language instruction has been a dream since before the Jetsons cartoon series imagined a life of leisure mediated by a fleet of attentive robot helpers. It is a dream that remains stubbornly distant. However, recent advances in vision and language methods have made incredible progress in closely related areas. This is significant because a robot interpreting a natural-language navigation instruction on the basis of what it sees is carrying out a vision and language process that is similar to Visual Question Answering. Both tasks can be interpreted as visually grounded sequence-to-sequence translation problems, and many of the same methods are applicable. To enable and encourage the application of vision and language methods to the problem of interpreting visually-grounded navigation instructions, we present the Matter-port3D Simulator - a large-scale reinforcement learning environment based on real imagery [11]. Using this simulator, which can in future support a range of embodied vision and language tasks, we provide the first benchmark dataset for visually-grounded natural language navigation in real buildings - the Room-to-Room (R2R) dataset1.

Journal ArticleDOI
TL;DR: This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies.
Abstract: The Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star, a neutron star–black hole binary and a binary black hole, where we show a cross comparison of results obtained using three independent sampling algorithms. These systems were analyzed with nonspinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analyzing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence parameter space.

Journal ArticleDOI
TL;DR: The enhancement of FAO provides a mechanistic explanation for the longevity of T cells receiving PD-1 signals in patients with chronic infections and cancer, and for their capacity to be reinvigorated byPD-1 blockade.
Abstract: During activation, T cells undergo metabolic reprogramming, which imprints distinct functional fates. We determined that on PD-1 ligation, activated T cells are unable to engage in glycolysis or amino acid metabolism but have an increased rate of fatty acid β-oxidation (FAO). PD-1 promotes FAO of endogenous lipids by increasing expression of CPT1A, and inducing lipolysis as indicated by elevation of the lipase ATGL, the lipolysis marker glycerol and release of fatty acids. Conversely, CTLA-4 inhibits glycolysis without augmenting FAO, suggesting that CTLA-4 sustains the metabolic profile of non-activated cells. Because T cells utilize glycolysis during differentiation to effectors, our findings reveal a metabolic mechanism responsible for PD-1-mediated blockade of T-effector cell differentiation. The enhancement of FAO provides a mechanistic explanation for the longevity of T cells receiving PD-1 signals in patients with chronic infections and cancer, and for their capacity to be reinvigorated by PD-1 blockade.

Proceedings ArticleDOI
15 Jun 2019
TL;DR: An integrated OLTR algorithm is developed that maps an image to a feature space such that visual concepts can easily relate to each other based on a learned metric that respects the closed-world classification while acknowledging the novelty of the open world.
Abstract: Real world data often have a long-tailed and open-ended distribution. A practical recognition system must classify among majority and minority classes, generalize from a few known instances, and acknowledge novelty upon a never seen instance. We define Open Long-Tailed Recognition (OLTR) as learning from such naturally distributed data and optimizing the classification accuracy over a balanced test set which include head, tail, and open classes. OLTR must handle imbalanced classification, few-shot learning, and open-set recognition in one integrated algorithm, whereas existing classification approaches focus only on one aspect and deliver poorly over the entire class spectrum. The key challenges are how to share visual knowledge between head and tail classes and how to reduce confusion between tail and open classes. We develop an integrated OLTR algorithm that maps an image to a feature space such that visual concepts can easily relate to each other based on a learned metric that respects the closed-world classification while acknowledging the novelty of the open world. Our so-called dynamic meta-embedding combines a direct image feature and an associated memory feature, with the feature norm indicating the familiarity to known classes. On three large-scale OLTR datasets we curate from object-centric ImageNet, scene-centric Places, and face-centric MS1M data, our method consistently outperforms the state-of-the-art. Our code, datasets, and models enable future OLTR research and are publicly available at \url{https://liuziwei7.github.io/projects/LongTail.html}.