scispace - formally typeset
Search or ask a question
Browse all papers

Journal ArticleDOI
TL;DR: The most common psychological factors affecting PWD, including diabetes distress and psychological comorbidities, are focused on, while also considering the needs of special populations and the context of care.
Abstract: Complex environmental, social, behavioral, and emotional factors, known as psychosocial factors, influence living with diabetes, both type 1 and type 2, and achieving satisfactory medical outcomes and psychological well-being. Thus, individuals with diabetes and their families are challenged with complex, multifaceted issues when integrating diabetes care into daily life. To promote optimal medical outcomes and psychological well-being, patient-centered care is essential, defined as “providing care that is respectful of and responsive to individual patient preferences, needs, and values and ensuring that patient values guide all clinical decisions” (1). Practicing personalized, patient-centered psychosocial care requires that communications and interactions, problem identification, psychosocial screening, diagnostic evaluation, and intervention services take into account the context of the person with diabetes (PWD) and the values and preferences of the PWD. This article provides diabetes care providers with evidence-based guidelines for psychosocial assessment and care of PWD and their families. Recommendations are based on commonly used clinical models, expert consensus, and tested interventions, taking into account available resources, practice patterns, and practitioner burden. Consideration of life span and disease course factors (Fig. 1) is critical in the psychosocial care of PWD. This Position Statement focuses on the most common psychological factors affecting PWD, including diabetes distress and psychological comorbidities, while also considering the needs of special populations and the context of care. Figure 1 Psychosocial care for PWD: life and disease course perspectives. *With depressed mood, anxiety, or emotion and conduct disturbance. **Personality traits, coping style, maladaptive health behaviors, or stress-related physiological response. \***|Examples include changing schools, moving, job/occupational changes, marriage or divorce, or experiencing loss. #### Recommendations

625 citations


Journal ArticleDOI
17 Jul 2019
TL;DR: In this article, a generalization of GNNs, called k-dimensional GNN (k-GNNs), is proposed, which can take higher-order graph structures at multiple scales into account.
Abstract: In recent years, graph neural networks (GNNs) have emerged as a powerful neural architecture to learn vector representations of nodes and graphs in a supervised, end-to-end fashion. Up to now, GNNs have only been evaluated empirically—showing promising results. The following work investigates GNNs from a theoretical point of view and relates them to the 1-dimensional Weisfeiler-Leman graph isomorphism heuristic (1-WL). We show that GNNs have the same expressiveness as the 1-WL in terms of distinguishing non-isomorphic (sub-)graphs. Hence, both algorithms also have the same shortcomings. Based on this, we propose a generalization of GNNs, so-called k-dimensional GNNs (k-GNNs), which can take higher-order graph structures at multiple scales into account. These higher-order structures play an essential role in the characterization of social networks and molecule graphs. Our experimental evaluation confirms our theoretical findings as well as confirms that higher-order information is useful in the task of graph classification and regression.

625 citations


Journal ArticleDOI
TL;DR: This research proposed a new definition of systems thinking that integrates these components both individually and holistically and was tested for fidelity against a System Test and against three widely accepted system archetypes.

625 citations


Journal ArticleDOI
TL;DR: A manga-specific image retrieval system that consists of efficient margin labeling, edge orientation histogram feature description with screen tone removal, and approximate nearest-neighbor search using product quantization is proposed.
Abstract: Manga (Japanese comics) are popular worldwide. However, current e-manga archives offer very limited search support, i.e., keyword-based search by title or author. To make the manga search experience more intuitive, efficient, and enjoyable, we propose a manga-specific image retrieval system. The proposed system consists of efficient margin labeling, edge orientation histogram feature description with screen tone removal, and approximate nearest-neighbor search using product quantization. For querying, the system provides a sketch-based interface. Based on the interface, two interactive reranking schemes are presented: relevance feedback and query retouch. For evaluation, we built a novel dataset of manga images, Manga109, which consists of 109 comic books of 21,142 pages drawn by professional manga artists. To the best of our knowledge, Manga109 is currently the biggest dataset of manga images available for research. Experimental results showed that the proposed framework is efficient and scalable (70 ms from 21,142 pages using a single computer with 204 MB RAM).

625 citations


Proceedings ArticleDOI
16 Mar 2017
TL;DR: SVDNet as mentioned in this paper proposes to optimize the deep representation learning process with Singular Vector Decomposition (SVD) to reduce the correlation among the projection vectors, which produces more discriminative FC descriptors, and significantly improves the reID accuracy.
Abstract: This paper proposes the SVDNet for retrieval problems, with focus on the application of person re-identification (reID). We view each weight vector within a fully connected (FC) layer in a convolutional neuron network (CNN) as a projection basis. It is observed that the weight vectors are usually highly correlated. This problem leads to correlations among entries of the FC descriptor, and compromises the retrieval performance based on the Euclidean distance. To address the problem, this paper proposes to optimize the deep representation learning process with Singular Vector Decomposition (SVD). Specifically, with the restraint and relaxation iteration (RRI) training scheme, we are able to iteratively integrate the orthogonality constraint in CNN training, yielding the so-called SVDNet. We conduct experiments on the Market-1501, CUHK03, and DukeMTMC-reID datasets, and show that RRI effectively reduces the correlation among the projection vectors, produces more discriminative FC descriptors, and significantly improves the re-ID accuracy. On the Market-1501 dataset, for instance, rank-1 accuracy is improved from 55.3% to 80.5% for CaffeNet, and from 73.8% to 82.3% for ResNet-50.

625 citations


Journal ArticleDOI
TL;DR: Obtaining a multiparametric MRI before biopsy in biopsy-naive patients can improve the detection of clinically significant prostate cancer but does not seem to avoid the need for systematic biopsy.
Abstract: Summary Background Whether multiparametric MRI improves the detection of clinically significant prostate cancer and avoids the need for systematic biopsy in biopsy-naive patients remains controversial. We aimed to investigate whether using this approach before biopsy would improve detection of clinically significant prostate cancer in biopsy-naive patients. Methods In this prospective, multicentre, paired diagnostic study, done at 16 centres in France, we enrolled patients aged 18–75 years with prostate-specific antigen concentrations of 20 ng/mL or less, and with stage T2c or lower prostate cancer. Eligible patients had been referred for prostate multiparametric MRI before a first set of prostate biopsies, with a planned interval of less than 3 months between MRI and biopsies. An operator masked to multiparametric MRI results did a systematic biopsy by obtaining 12 systematic cores and up to two cores targeting hypoechoic lesions. In the same patient, another operator targeted up to two lesions seen on MRI with a Likert score of 3 or higher (three cores per lesion) using targeted biopsy based on multiparametric MRI findings. Patients with negative multiparametric MRI (Likert score ≤2) had systematic biopsy only. The primary outcome was the detection of clinically significant prostate cancer of International Society of Urological Pathology grade group 2 or higher (csPCa-A), analysed in all patients who received both systematic and targeted biopsies and whose results from both were available for pathological central review, including patients who had protocol deviations. This study is registered with ClinicalTrials.gov, number NCT02485379, and is closed to new participants. Findings Between July 15, 2015, and Aug 11, 2016, we enrolled 275 patients. 24 (9%) were excluded from the analysis. 53 (21%) of 251 analysed patients had negative (Likert ≤2) multiparametric MRI. csPCa-A was detected in 94 (37%) of 251 patients. 13 (14%) of these 94 patients were diagnosed by systematic biopsy only, 19 (20%) by targeted biopsy only, and 62 (66%) by both techniques. Detection of csPCa-A by systematic biopsy (29·9%, 95% CI 24·3–36·0) and targeted biopsy (32·3%, 26·5–38·4) did not differ significantly (p=0·38). csPCa-A would have been missed in 5·2% (95% CI 2·8–8·7) of patients had systematic biopsy not been done, and in 7·6% (4·6–11·6) of patients had targeted biopsy not been done. Four grade 3 post-biopsy adverse events were reported (3 cases of prostatitis, and 1 case of urinary retention with haematuria). Interpretation There was no difference between systematic biopsy and targeted biopsy in the detection of ISUP grade group 2 or higher prostate cancer; however, this detection was improved by combining both techniques and both techniques showed substantial added value. Thus, obtaining a multiparametric MRI before biopsy in biopsy-naive patients can improve the detection of clinically significant prostate cancer but does not seem to avoid the need for systematic biopsy. Funding French National Cancer Institute.

625 citations


Posted ContentDOI
12 Feb 2020-medRxiv
TL;DR: Sputum is most accurate for laboratory diagnosis of NCP, followed by nasal swabs, followedby nasal swab, and detection of viral RNAs in BLAF is necessary for diagnosis and monitoring of viruses in severe cases.
Abstract: Background The outbreak of novel coronavirus pneumonia (NCP) caused by 2019-nCoV spread rapidly, and elucidating the diagnostic accuracy of different respiratory specimens is crucial for the control and treatment of this disease. Methods Respiratory samples including nasal swabs, throat swabs, sputum and bronchoalveolar lavage fluid (BALF) were collected from Guangdong CDC confirmed NCP patients, and viral RNAs were detected using a CFDA approved detection kit. Results were analyzed in combination with sample collection date and clinical information. Findings Except for BALF, the sputum possessed the highest positive rate (74.4%∼88.9%), followed by nasal swabs (53.6%∼73.3%) for both severe and mild cases during the first 14 days after illness onset (d.a.o). For samples collected ≥ 15 d.a.o, sputum and nasal swabs still possessed a high positive rate ranging from 42.9%∼61.1%. The positive rate of throat swabs collected ≥ 8 d.a.o was low, especially in samples from mild cases. Viral RNAs could be detected in all the lower respiratory tract of severe cases, but not the mild cases. CT scan of cases 02, 07 and 13 showed typical viral pneumonia with ground-glass opacity, while no viral RNAs were detected in first three or all the upper respiratory samples. Interpretation Sputum is most accurate for laboratory diagnosis of NCP, followed by nasal swabs. Detection of viral RNAs in BLAF is necessary for diagnosis and monitoring of viruses in severe cases. CT scan could serve as an important make up for the diagnosis of NCP. Funding National Science and Technology Major Project, Sanming Project of Medicine and China Postdoctoral Science Foundation.

625 citations


Journal ArticleDOI
TL;DR: It is experimentally demonstrated that the electronic structure of few-layer phosphorene varies significantly with the number of layers, in good agreement with theoretical predictions, and the interband optical transitions cover a wide, technologically important spectral range.
Abstract: Phosphorene, a single atomic layer of black phosphorus, has recently emerged as a new two-dimensional (2D) material that holds promise for electronic and photonic technologies. Here we experimentally demonstrate that the electronic structure of few-layer phosphorene varies significantly with the number of layers, in good agreement with theoretical predictions. The interband optical transitions cover a wide, technologically important spectral range from the visible to the mid-infrared. In addition, we observe strong photoluminescence in few-layer phosphorene at energies that closely match the absorption edge, indicating that they are direct bandgap semiconductors. The strongly layer-dependent electronic structure of phosphorene, in combination with its high electrical mobility, gives it distinct advantages over other 2D materials in electronic and opto-electronic applications.

625 citations


Journal ArticleDOI
17 Feb 2016-PLOS ONE
TL;DR: A statistical model is developed that quantifies the effect of the majority illusion and shows that the illusion is exacerbated in networks with a heterogeneous degree distribution and disassortative structure.
Abstract: Individual’s decisions, from what product to buy to whether to engage in risky behavior, often depend on the choices, behaviors, or states of other people. People, however, rarely have global knowledge of the states of others, but must estimate them from the local observations of their social contacts. Network structure can significantly distort individual’s local observations. Under some conditions, a state that is globally rare in a network may be dramatically over-represented in the local neighborhoods of many individuals. This effect, which we call the “majority illusion,” leads individuals to systematically overestimate the prevalence of that state, which may accelerate the spread of social contagions. We develop a statistical model that quantifies this effect and validate it with measurements in synthetic and real-world networks. We show that the illusion is exacerbated in networks with a heterogeneous degree distribution and disassortative structure.

625 citations


Journal ArticleDOI
Lin-Lu Ma1, Yun-Yun Wang1, Zhi-Hua Yang1, Di Huang1, Hong Weng1, Xian-Tao Zeng 
TL;DR: This review introduced methodological quality assessment tools for randomized controlled trial, animal study, non-randomized interventional studies, qualitative study, outcome measurement instruments, systematic review and meta-analysis, and clinical practice guideline.
Abstract: Methodological quality (risk of bias) assessment is an important step before study initiation usage. Therefore, accurately judging study type is the first priority, and the choosing proper tool is also important. In this review, we introduced methodological quality assessment tools for randomized controlled trial (including individual and cluster), animal study, non-randomized interventional studies (including follow-up study, controlled before-and-after study, before-after/ pre-post study, uncontrolled longitudinal study, interrupted time series study), cohort study, case-control study, cross-sectional study (including analytical and descriptive), observational case series and case reports, comparative effectiveness research, diagnostic study, health economic evaluation, prediction study (including predictor finding study, prediction model impact study, prognostic prediction model study), qualitative study, outcome measurement instruments (including patient - reported outcome measure development, content validity, structural validity, internal consistency, cross-cultural validity/ measurement invariance, reliability, measurement error, criterion validity, hypotheses testing for construct validity, and responsiveness), systematic review and meta-analysis, and clinical practice guideline. The readers of our review can distinguish the types of medical studies and choose appropriate tools. In one word, comprehensively mastering relevant knowledge and implementing more practices are basic requirements for correctly assessing the methodological quality.

625 citations


Proceedings ArticleDOI
01 Jul 2017
TL;DR: Split-brain autoencoders as mentioned in this paper add a split to the network, resulting in two disjoint sub-networks, each sub-network is trained to perform a difficult task predicting one subset of the data channels from another.
Abstract: We propose split-brain autoencoders, a straightforward modification of the traditional autoencoder architecture, for unsupervised representation learning. The method adds a split to the network, resulting in two disjoint sub-networks. Each sub-network is trained to perform a difficult task – predicting one subset of the data channels from another. Together, the sub-networks extract features from the entire input signal. By forcing the network to solve cross-channel prediction tasks, we induce a representation within the network which transfers well to other, unseen tasks. This method achieves state-of-the-art performance on several large-scale transfer learning benchmarks.

Journal ArticleDOI
TL;DR: It is found that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle, and forests are expected to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks.
Abstract: Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon-climate feedbacks.

Journal ArticleDOI
TL;DR: In this article, the authors argue that the continuous limit order book is a flawed market design and propose that financial exchanges instead use frequent batch auctions: uniform-price sealed-bid double auctions conducted at frequent but discrete time intervals, e.g., every 1 second.
Abstract: We argue that the continuous limit order book is a flawed market design and propose that financial exchanges instead use frequent batch auctions: uniform-price sealed-bid double auctions conducted at frequent but discrete time intervals, e.g., every 1 second. Our argument has four parts. First, we use millisecond-level direct-feed data from exchanges to show that the continuous limit order book market design does not really “work” in continuous time: market correlations completely break down at high-frequency time horizons. Second, we show that this correlation breakdown creates frequent technical arbitrage opportunities, available to whomever is fastest, which in turn creates an arms race to exploit such opportunities. Third, we develop a simple new theory model motivated by these empirical facts. The model shows that the arms race is not only socially wasteful ‐ a prisoner’s dilemma built directly into the market design ‐ but moreover that its cost is ultimately borne by investors via wider spreads and thinner markets. Last, we show that frequent batch auctions eliminate the arms race, both because they reduce the value of tiny speed advantages and because they transform competition on speed into competition on price. Consequently, frequent batch auctions lead to narrower spreads, deeper markets, and increased social welfare.

Posted Content
TL;DR: In this article, the authors proposed a new deep learning approach, Moment Matching for Multi-source Domain Adaptation M3SDA, which aims to transfer knowledge learned from multiple labeled source domains to an unlabeled target domain by dynamically aligning moments of their feature distributions.
Abstract: Conventional unsupervised domain adaptation (UDA) assumes that training data are sampled from a single domain. This neglects the more practical scenario where training data are collected from multiple sources, requiring multi-source domain adaptation. We make three major contributions towards addressing this problem. First, we collect and annotate by far the largest UDA dataset, called DomainNet, which contains six domains and about 0.6 million images distributed among 345 categories, addressing the gap in data availability for multi-source UDA research. Second, we propose a new deep learning approach, Moment Matching for Multi-Source Domain Adaptation M3SDA, which aims to transfer knowledge learned from multiple labeled source domains to an unlabeled target domain by dynamically aligning moments of their feature distributions. Third, we provide new theoretical insights specifically for moment matching approaches in both single and multiple source domain adaptation. Extensive experiments are conducted to demonstrate the power of our new dataset in benchmarking state-of-the-art multi-source domain adaptation methods, as well as the advantage of our proposed model. Dataset and Code are available at \url{this http URL}.

Journal ArticleDOI
08 Jan 2016-Science
TL;DR: Using a cell-sorting scheme based on markers linked to Er and Mk lineage specification, it is found that previously described populations of multipotent progenitors (MPPs), CMPs, and megakaryocyte-erythroid progenitor (MEPs) were heterogeneous and could be further purified.
Abstract: In a classical view of hematopoiesis, the various blood cell lineages arise via a hierarchical scheme starting with multipotent stem cells that become increasingly restricted in their differentiation potential through oligopotent and then unipotent progenitors. We developed a cell-sorting scheme to resolve myeloid (My), erythroid (Er), and megakaryocytic (Mk) fates from single CD34(+) cells and then mapped the progenitor hierarchy across human development. Fetal liver contained large numbers of distinct oligopotent progenitors with intermingled My, Er, and Mk fates. However, few oligopotent progenitor intermediates were present in the adult bone marrow. Instead, only two progenitor classes predominate, multipotent and unipotent, with Er-Mk lineages emerging from multipotent cells. The developmental shift to an adult "two-tier" hierarchy challenges current dogma and provides a revised framework to understand normal and disease states of human hematopoiesis.

Journal ArticleDOI
TL;DR: It is described that SARS-CoV-2 triggers the release of ACE2-depended neutrophil extracellular traps (NETs) that mediate lung pathology, supporting the use of NETs inhibitors for COVID-19 treatment.
Abstract: Severe COVID-19 patients develop acute respiratory distress syndrome that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that neutrophil extracellular traps (NETs) have been described as important mediators of tissue damage in inflammatory diseases, we investigated whether NETs would be involved in COVID-19 pathophysiology. A cohort of 32 hospitalized patients with a confirmed diagnosis of COVID-19 and healthy controls were enrolled. The concentration of NETs was augmented in plasma, tracheal aspirate, and lung autopsies tissues from COVID-19 patients, and their neutrophils released higher levels of NETs. Notably, we found that viable SARS-CoV-2 can directly induce the release of NETs by healthy neutrophils. Mechanistically, NETs triggered by SARS-CoV-2 depend on angiotensin-converting enzyme 2, serine protease, virus replication, and PAD-4. Finally, NETs released by SARS-CoV-2-activated neutrophils promote lung epithelial cell death in vitro. These results unravel a possible detrimental role of NETs in the pathophysiology of COVID-19. Therefore, the inhibition of NETs represents a potential therapeutic target for COVID-19.

Journal ArticleDOI
TL;DR: Resequencing of 302 soybean accessions and GWAS provide a comprehensive resource for soybean geneticists and breeders.
Abstract: Resequencing of 302 soybean accessions and GWAS provide a comprehensive resource for soybean geneticists and breeders.

Journal ArticleDOI
TL;DR: BoltzTraP2 is a software package for calculating a smoothed Fourier expression of periodic functions and the Onsager transport coefficients for extended systems using the linearized Boltzmann transport equation within the relaxation time approximation.

Journal ArticleDOI
TL;DR: A brief overview of text classification algorithms is discussed in this article, where different text feature extractions, dimensionality reduction methods, existing algorithms and techniques, and evaluations methods are discussed, and the limitations of each technique and their application in real-world problems are discussed.
Abstract: In recent years, there has been an exponential growth in the number of complex documents and texts that require a deeper understanding of machine learning methods to be able to accurately classify texts in many applications. Many machine learning approaches have achieved surpassing results in natural language processing. The success of these learning algorithms relies on their capacity to understand complex models and non-linear relationships within data. However, finding suitable structures, architectures, and techniques for text classification is a challenge for researchers. In this paper, a brief overview of text classification algorithms is discussed. This overview covers different text feature extractions, dimensionality reduction methods, existing algorithms and techniques, and evaluations methods. Finally, the limitations of each technique and their application in real-world problems are discussed.

Journal ArticleDOI
TL;DR: This review discusses plant-based natural product drug discovery and how innovative technologies play a role in next-generation drug discovery.
Abstract: The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of “active compound” has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of ‘organ-on chip’ and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug development. This review discusses plant-based natural product drug discovery and how innovative technologies play a role in next-generation drug discovery.

Journal ArticleDOI
TL;DR: Severe acute respiratory syndrome‐coronavirus‐2 (SARS‐CoV‐2), the virus that causes coronavirus disease 2019 (COVID‐19), is responsible for the largest pandemic since the 1918 influenza A virus subtype H1N1 influenza outbreak.
Abstract: BACKGROUND: Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), is responsible for the largest pandemic since the 1918 influenza A virus subtype H1N1 influenza outbreak. The symptoms presently recognized by the World Health Organization are cough, fever, tiredness, and difficulty breathing. Patient-reported smell and taste loss has been associated with COVID-19 infection, yet no empirical olfactory testing on a cohort of COVID-19 patients has been performed. METHODS: The University of Pennsylvania Smell Identification Test (UPSIT), a well-validated 40-odorant test, was administered to 60 confirmed COVID-19 inpatients and 60 age- and sex-matched controls to assess the magnitude and frequency of their olfactory dysfunction. A mixed effects analysis of variance determined whether meaningful differences in test scores existed between the 2 groups and if the test scores were differentially influenced by sex. RESULTS: Fifty-nine (98%) of the 60 patients exhibited some smell dysfunction (mean [95% CI] UPSIT score: 20.98 [19.47, 22.48]; controls: 34.10 [33.31, 34.88]; p < 0.0001). Thirty-five of the 60 patients (58%) were either anosmic (15/60; 25%) or severely microsmic (20/60; 33%); 16 exhibited moderate microsmia (16/60; 27%), 8 mild microsmia (8/60; 13%), and 1 normosmia (1/60; 2%). Deficits were evident for all 40 UPSIT odorants. No meaningful relationships between the test scores and sex, disease severity, or comorbidities were found. CONCLUSION: Quantitative smell testing demonstrates that decreased smell function, but not always anosmia, is a major marker for SARS-CoV-2 infection and suggests the possibility that smell testing may help, in some cases, to identify COVID-19 patients in need of early treatment or quarantine.

Journal ArticleDOI
TL;DR: A comprehensive survey on UAV communication toward 5G/B5G wireless networks is presented and an exhaustive review of various 5G techniques based on Uav platforms is provided, which are categorize by different domains, including physical layer, network layer, and joint communication, computing, and caching.
Abstract: Providing ubiquitous connectivity to diverse device types is the key challenge for 5G and beyond 5G (B5G). Unmanned aerial vehicles (UAVs) are expected to be an important component of the upcoming wireless networks that can potentially facilitate wireless broadcast and support high rate transmissions. Compared to the communications with fixed infrastructure, UAV has salient attributes, such as flexible deployment, strong line-of-sight connection links, and additional design degrees of freedom with the controlled mobility. In this paper, a comprehensive survey on UAV communication toward 5G/B5G wireless networks is presented. We first briefly introduce essential background and the space–air–ground integrated networks, as well as discuss related research challenges faced by the emerging integrated network architecture. We then provide an exhaustive review of various 5G techniques based on UAV platforms, which we categorize by different domains, including physical layer, network layer, and joint communication, computing, and caching. In addition, a great number of open research problems are outlined and identified as possible future research directions.

Journal ArticleDOI
TL;DR: It is predicted that the tetradymite-type compound MnBi_{2}Te_{4} and its related materials host topologically nontrivial magnetic states that might lead to a minimal ideal Weyl semimetal.
Abstract: Topological states of quantum matter have attracted great attention in condensed matter physics and materials science. The study of time-reversal-invariant topological states in quantum materials has made tremendous progress. However, the study of magnetic topological states falls much behind due to the complex magnetic structures. Here, we predict the tetradymite-type compound ${\mathrm{MnBi}}_{2}{\mathrm{Te}}_{4}$ and its related materials host topologically nontrivial magnetic states. The magnetic ground state of ${\mathrm{MnBi}}_{2}{\mathrm{Te}}_{4}$ is an antiferromagetic topological insulator state with a large topologically nontrivial energy gap ($\ensuremath{\sim}0.2\text{ }\text{ }\mathrm{eV}$). It presents the axion state, which has gapped bulk and surface states, and the quantized topological magnetoelectric effect. The ferromagnetic phase of ${\mathrm{MnBi}}_{2}{\mathrm{Te}}_{4}$ might lead to a minimal ideal Weyl semimetal.

Journal ArticleDOI
TL;DR: A knee point-driven EA to solve MaOPs by showing that knee points are naturally most preferred among nondominated solutions if no explicit user preferences are given and enhancing the convergence performance in many-objective optimization.
Abstract: Evolutionary algorithms (EAs) have shown to be promising in solving many-objective optimization problems (MaOPs), where the performance of these algorithms heavily depends on whether solutions that can accelerate convergence toward the Pareto front and maintaining a high degree of diversity will be selected from a set of nondominated solutions. In this paper, we propose a knee point-driven EA to solve MaOPs. Our basic idea is that knee points are naturally most preferred among nondominated solutions if no explicit user preferences are given. A bias toward the knee points in the nondominated solutions in the current population is shown to be an approximation of a bias toward a large hypervolume, thereby enhancing the convergence performance in many-objective optimization. In addition, as at most one solution will be identified as a knee point inside the neighborhood of each solution in the nondominated front, no additional diversity maintenance mechanisms need to be introduced in the proposed algorithm, considerably reducing the computational complexity compared to many existing multiobjective EAs for many-objective optimization. Experimental results on 16 test problems demonstrate the competitiveness of the proposed algorithm in terms of both solution quality and computational efficiency.

Journal ArticleDOI
22 Apr 2016-Science
TL;DR: It is shown that cadmium sulfide (CdS) nanocrystals can be used to photosensitize the nitrogenase molybdenum-iron (MoFe) protein, where light harvesting replaces ATP hydrolysis to drive the enzymatic reduction of N2 into NH3.
Abstract: The splitting of dinitrogen (N2) and reduction to ammonia (NH3) is a kinetically complex and energetically challenging multistep reaction. In the Haber-Bosch process, N2 reduction is accomplished at high temperature and pressure, whereas N2 fixation by the enzyme nitrogenase occurs under ambient conditions using chemical energy from adenosine 5'-triphosphate (ATP) hydrolysis. We show that cadmium sulfide (CdS) nanocrystals can be used to photosensitize the nitrogenase molybdenum-iron (MoFe) protein, where light harvesting replaces ATP hydrolysis to drive the enzymatic reduction of N2 into NH3 The turnover rate was 75 per minute, 63% of the ATP-coupled reaction rate for the nitrogenase complex under optimal conditions. Inhibitors of nitrogenase (i.e., acetylene, carbon monoxide, and dihydrogen) suppressed N2 reduction. The CdS:MoFe protein biohybrids provide a photochemical model for achieving light-driven N2 reduction to NH3.

Journal ArticleDOI
TL;DR: The types and nature of the waste that originates from fruits and vegetables, the bioactive components in the waste, their extraction techniques, and the potential utilization of the obtained bioactive compounds are described.
Abstract: Fruits and vegetables are the most utilized commodities among all horticultural crops. They are consumed raw, minimally processed, as well as processed, due to their nutrients and health-promoting compounds. With the growing population and changing diet habits, the production and processing of horticultural crops, especially fruits and vegetables, have increased very significantly to fulfill the increasing demands. Significant losses and waste in the fresh and processing industries are becoming a serious nutritional, economical, and environmental problem. For example, the United Nations Food and Agriculture Organization (FAO) has estimated that losses and waste in fruits and vegetables are the highest among all types of foods, and may reach up to 60%. The processing operations of fruits and vegetables produce significant wastes of by-products, which constitute about 25% to 30% of a whole commodity group. The waste is composed mainly of seed, skin, rind, and pomace, containing good sources of potentially valuable bioactive compounds, such as carotenoids, polyphenols, dietary fibers, vitamins, enzymes, and oils, among others. These phytochemicals can be utilized in different industries including the food industry, for the development of functional or enriched foods, the health industry for medicines and pharmaceuticals, and the textile industry, among others. The use of waste for the production of various crucial bioactive components is an important step toward sustainable development. This review describes the types and nature of the waste that originates from fruits and vegetables, the bioactive components in the waste, their extraction techniques, and the potential utilization of the obtained bioactive compounds.

Journal ArticleDOI
TL;DR: Among patients with stage III colon cancer receiving adjuvant therapy with FOLFOX or CAPOX, noninferiority of 3 months of therapy, as compared with 6 months, was not confirmed in the overall population.
Abstract: Background Since 2004, a regimen of 6 months of treatment with oxaliplatin plus a fluoropyrimidine has been standard adjuvant therapy in patients with stage III colon cancer. However, since oxaliplatin is associated with cumulative neurotoxicity, a shorter duration of therapy could spare toxic effects and health expenditures. Methods We performed a prospective, preplanned, pooled analysis of six randomized, phase 3 trials that were conducted concurrently to evaluate the noninferiority of adjuvant therapy with either FOLFOX (fluorouracil, leucovorin, and oxaliplatin) or CAPOX (capecitabine and oxaliplatin) administered for 3 months, as compared with 6 months. The primary end point was the rate of disease-free survival at 3 years. Noninferiority of 3 months versus 6 months of therapy could be claimed if the upper limit of the two-sided 95% confidence interval of the hazard ratio did not exceed 1.12. Results After 3263 events of disease recurrence or death had been reported in 12,834 patients, the n...

Journal ArticleDOI
TL;DR: This study shows that ctDNA analysis can robustly identify posttreatment MRD in patients with localized lung cancer, identifying residual/recurrent disease earlier than standard-of-care radiologic imaging, and thus could facilitate personalized adjuvant treatment at early time points when disease burden is lowest.
Abstract: Identifying molecular residual disease (MRD) after treatment of localized lung cancer could facilitate early intervention and personalization of adjuvant therapies. Here, we apply cancer personalized profiling by deep sequencing (CAPP-seq) circulating tumor DNA (ctDNA) analysis to 255 samples from 40 patients treated with curative intent for stage I-III lung cancer and 54 healthy adults. In 94% of evaluable patients experiencing recurrence, ctDNA was detectable in the first posttreatment blood sample, indicating reliable identification of MRD. Posttreatment ctDNA detection preceded radiographic progression in 72% of patients by a median of 5.2 months, and 53% of patients harbored ctDNA mutation profiles associated with favorable responses to tyrosine kinase inhibitors or immune checkpoint blockade. Collectively, these results indicate that ctDNA MRD in patients with lung cancer can be accurately detected using CAPP-seq and may allow personalized adjuvant treatment while disease burden is lowest.Significance: This study shows that ctDNA analysis can robustly identify posttreatment MRD in patients with localized lung cancer, identifying residual/recurrent disease earlier than standard-of-care radiologic imaging, and thus could facilitate personalized adjuvant treatment at early time points when disease burden is lowest. Cancer Discov; 7(12); 1394-403. ©2017 AACR.See related commentary by Comino-Mendez and Turner, p. 1368This article is highlighted in the In This Issue feature, p. 1355.

Journal ArticleDOI
TL;DR: Loneliness and quality of social support in depression are potential targets for development and testing of interventions, while for other conditions further evidence is needed regarding relationships with outcomes.
Abstract: The adverse effects of loneliness and of poor perceived social support on physical health and mortality are established, but no systematic synthesis is available of their relationship with the outcomes of mental health problems over time. In this systematic review, we aim to examine the evidence on whether loneliness and closely related concepts predict poor outcomes among adults with mental health problems. We searched six databases and reference lists for longitudinal quantitative studies that examined the relationship between baseline measures of loneliness and poor perceived social support and outcomes at follow up. Thirty-four eligible papers were retrieved. Due to heterogeneity among included studies in clinical populations, predictor measures and outcomes, a narrative synthesis was conducted. We found substantial evidence from prospective studies that people with depression who perceive their social support as poorer have worse outcomes in terms of symptoms, recovery and social functioning. Loneliness has been investigated much less than perceived social support, but there is some evidence that greater loneliness predicts poorer depression outcome. There is also some preliminary evidence of associations between perceived social support and outcomes in schizophrenia, bipolar disorder and anxiety disorders. Loneliness and quality of social support in depression are potential targets for development and testing of interventions, while for other conditions further evidence is needed regarding relationships with outcomes.

Journal ArticleDOI
TL;DR: The recommendations presented here are based on the best available evidence and expert agreement and are presented with a summary of evidence supporting each recommendation.