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We present a digital architecture for fast acquisition of 

time correlated single photon counting (TCSPC) events 

from a 32×32 CMOS SPAD array (Megaframe) to the 

computer memory. Custom firmware was written to 

transmit event codes from 1024 TCSPC-enabled pixels for 

fast transfer of TCSPC events. Our 1024 channel TCSPC 

system is capable of acquiring up to 0.5 × 109 TCSPC 

events per second with 16 histogram bins spanning 14 ns 

width. Other options include 320 × 106 TCSPC events per 

second with 256 histogram bins spanning either 14 ns or 

56 ns time window. We present a wide-field fluorescence 

microscopy setup demonstrating fast fluorescence 

lifetime data acquisition. To the best of our knowledge, 

this is the fastest direct TCSPC transfer from a single 

photon counting device to the computer to date. © 2015 

Optical Society of America 

OCIS codes: (040.1240 ) Detectors : Arrays; (040.5160) Detectors :  

Photodetectors; (040.3780)   Detectors :Low light level; (170.6280) 

Medical optics and biotechnology : Spectroscopy, fluorescence and 

luminescence.  
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Time correlated single photon counting (TCSPC) is the most accurate 

technique available for determining fluorescence decays down to sub-

nanosecond time ranges. The technique originated in nuclear physics 

where scintillation decay curves provided clues about the nuclear 

particles being detected by the scintillating crystal  [1]. Over time, 

TCSPC has expanded into chemistry  [2] and a range of biomedical 

applications  [3] including fluorescence lifetime imaging (FLIM)  [4,5]. 

Printed circuit board (PCB) level electronics integration enabled 

widespread use of TCSPC since the early ‘90s when commercial 

suppliers provided bespoke systems for a range of applications from 

quantum optics to tissue imaging. We believe that the next 

technological push will involve integrating single photon detection, 

timing and processing circuitry on a single semiconductor die. The best 

contender for this leap is the standard complementary metal oxide 

semiconductor (CMOS) technology [6], because standard CMOS has 

already been the key driver in global electronics miniaturization.   

A number of CMOS single photon avalanche detector (SPAD) 

sensors have achieved low noise, high frame rate and scalability 

needed for fluorescence imaging applications  [7,8]. CMOS SPAD 

imaging sensors enable highly parallelized TCSPC, but at the same time 

present a serious data bottleneck. The CMOS SPAD sensor used in this 

study is 32 × 32 pixel, 55 ps time resolution, 10 bit time-to-digital 

converter (TDC), 56 ns time window, Megaframe (MF32) sensor [7,8]. 

Whilst the fill factor of the MF32 sensor used is low (1.5%), our 

previous work demonstrates optical fill factor amplification to 

100% [9,10] by generating 64 fluorescence beamlets which are 

imaged onto the active area of the SPAD (fill factor amplification is not 

used in the work presented here). The MF32 interface to the field 

programmable gate array (FPGA) is limited to 500000 frames per 

second (fps) and the transfer of this data to the computer has not been 

optimised. This manuscript addresses the data bottleneck challenge by 

achieving optimal count rates from the sensor to the computer 

memory via FPGA and the universal serial bus 3 (USB3).  

To the best of our knowledge, we demonstrate the best TCSPC count 

rates to date. Prior work  [11] achieved 80 million counts per second 

(often referred to as timestamps or time-tags) (Mcps) without taking 

into account pile-up effects in their lifetime determination. In present 

work we demonstrate 500 Mcps. This value is close to acceptable limit 

for counts in terms of pulse pile-up (1% for a laser rep rate of 50MHz). 

Such count rate is likely to cater for larger sensors since low light 

widefield fluorescence detection usually acquires 1000-5000 counts 

per second  [12] meaning that a 100 × 100 pixel TCSPC sensor would 

work well (assuming 100% fill factor). The results presented here are 

directly applicable to multi-beam scanning required for ultrafast FLIM 

applications [13].  

The measured TCSPC events need to be passed from the sensor to 

the FPGA, and then from the FPGA to the computer, see Fig. 1. As 

shown on Fig. 1. the interface to MF32 sensor consists of clocking the 

LINECLK line at 8MHz. This clock places data on the 64 bit DATA_TDC 

parallel bus. The readout reads two lines of 10 bit TDC values from the 

sensor for each LINECLK cycle. The DATA_SAMPLE_CLK is set to 

80MHz which enables the sampling of the 10 bit TDC value over 10 

clock cycles to fit the LINECLK 8MHz rate. 640 bits (64 pixels with 10 

bit TDC values) are processed by the MF32 interface module on the 



FPGA. For best performance, 64 × 10 bit TDC values are compressed to 

64 × 4 bit TDC values losing some time resolution, but allowing 

unprecedented TCSPC event rate. The resulting 256 bits (64 pixels 

with 4 bit TDC values) need to be sent via USB3 every 125 µs. Total 

data throughput required is thus 256 megabytes per second (MB/s). 

USB3 bus has maximum data rate of 300-340 MB/s, so it gives ample 

room to fit 0.5 billion events per second. USB3 bus is not real-time, so a 

first in first out (FIFO) buffer is needed to allow for communications to 

be smooth. 128 kilobytes (KB) FIFO buffer was implemented with 128 

bit input (FIFO_DATA_IN) and 32 bit output (FIFO_DATA_OUT). The 

manufacturer of the PCB (Opal Kelly) provides a dedicated 32 bit bus 

on the FPGA and FIFO_DATA_OUT is channeled via USB3. 

The timing diagram shown in Fig. 2. further illustrates the clocking 

frequencies of the data path. Data from the MF32 sensor is fed into the 

FIFO over 128 bit wide bus at 32 MHz. USB3 data is clocking 32 bits of 

data at 100MHz thus allowing up to 400 MB/s in principle. However, 

the USB3 protocol overheads and delays on the either the PC or 

embedded side may hold up the communications, so sustained 300-

340MB/s is usually achievable on most PCs with USB3 link. 

 

Fig. 1. MF32 embedded system architecture illustrating the FPGA’s role 
in channeling data from the MF32 to computer via the USB3 serial bus. 

Laser scanning microscopy is enabled via trigger signals (PIXEL, LINE 

and FRAME clocks) while the laser STOP halts the TDC. 

 

Fig. 2. Timing diagram of the main clock and data signals. 

 

The TDC in MF32 is 10 bits long and the histogram time window 

spans 0 to 1023 bins, with each having 55 ps time resolution resulting 

in time window of 56 ns. The time resolution of 55 ps can be tuned 

between 50 ps and 100 ps by manipulating sensor settings  [14]. Also, 

depending on the repetition rate of the laser, the histogram time 

window of interest might be shorter than the time window available 

(repetition rate >17.86 MHz for 56 ns time window). This allows TDC 

time-correlated event value to be processed on FPGA without loss of 

information. As shown in Fig. 3., the expected fluorescence lifetimes in 

the given specimen need to be considered. The probe with slowly 

decaying fluorescence (shown in Fig. 3.) requires a full 56 ns time 

window while the fast decay requires 14 ns and therefore only the 

bottom 8 bits of the TDC. This is the situation with fast repetition rate 

mode-locked lasers such as Ti:Sapphire and pulsed laser diodes where 

the repetition rate can be >75 MHz,. The 8 bit TDC covering the 0 to 14 

ns time window is appropriate in this case and the compression is 

lossless in terms of time resolution. 

A wide-field FLIM setup was built to illustrate fast TCSPC event 

collection direct to computer memory (see Fig. 4). Convallaria majalis 

rhizome stained with acridine orange (As-812z, Medical Science Media, 

Australia) was used as a test specimen. A pulsed laser (485 nm, 64ps, 

Hamamatsu plp10 laser driver) was coupled to a 400 µm diameter 

multimode fiber and used to illuminate the slide via a dichroic 

beamsplitter (Semrock,, FF499-Di01-25x36) and infinity-corrected 

microscope objective (Thorlabs, RMS10X). Fluorescence from the slide 

was imaged onto MF32 and color CCD (PCO pixelfly usb, Bayer color 

filter, PCO Gmbh) cameras simultaneously after passing it through 

emission filter (Semrock FF01-530/43-25) and beamsplitting the 

signal. The pulsed laser was used at the maximum 100 MHz repetition 

rate. The CMOS SPAD sensor was controlled using custom software 

developed in the LabVIEW 2014 graphical programming environment 

(National Instruments). We use a USB3 enabled Opal Kelly board 

XEM6310-LX150 which contains a Spartan 6 FPGA (Xilinx, USA). 

Instrument response function (IRF) was acquired by placing a solution 

of Ludox (Sigma Aldrich) in the position of specimen. Emission filter 

was removed and the neutral density filter was added to the emission 

path to reduce the intensity of backscattered light (dichroic used 

passes ~0.1% at 485 nm excitation wavelength). As described before, 

each pixel has a separate IRF acquired and this IRF is used for lifetime 

estimation of the respective pixel. 

 

Fig. 3.  The time window is adjusted to the TDC word to enable 

compression. 10 bit TDC covers 56 ns time window at 55ps time 

resolution or 8 bit TDC covers the same range at 220 ps time 

resolution.  

 

 

Fig. 4.  Wide-field FLIM setup. Pulsed laser (L) is coupled into 400 µm 

multimode fiber (MMF) and used to illuminate sample (S) via 

microscope objective (MO) and dichroic (D). Fluorescence from the 

sample is split into two detectors, CCD and CMOS SPAD sensor. Data 

from both sensors is simultaneously uploaded to the computer. 

An example of wide-field microscopy and FLIM images acquired by 

the setup described above is shown in Fig. 5. The three square regions 

shown in Fig. 5 (image to the left) are the regions focused onto MF32. 

MF32 was mounted on XY stage to manually move the field of view 

(FOV) to allow selection of multiple regions within FOV. Due to small 

resolution of MF32, we opted to adjust the image magnification so that 

MF32 shows a smaller region of the field of view than is available to the 



CCD.  Three images on the right of Fig. 5. are FLIM images. The lifetime 

was extracted using iterative reconvolution with Levenberg-Marquard 

fitting using custom Matlab scripts derived from DecayFit 1.3 [15,16]. 

The FLIM images shown in Fig. 5. were acquired in 3s at 320 Mcps 

with an 8 bit TDC covering the 14 ns time window and a 100 MHz laser 

repetition rate. Out of 320Mcps, 11 × 10^6 events were non-zero 

values fed into histograms. Over 3s this resulted in 33000 events per 

pixel on average. The transfer is organized on frame per frame basis, so if no photon is detected in a given frame’s exposure time then the value 

for the pixel is written as 0. Pile-up artefact is avoided by assuring that 

the frame rate is <1% of the laser repetition rate. With higher laser 

power, improved  optics and fill factor improvement  [9,10,13] this 

value will easily scale to 500 Mcps of photon events. We verified full 

data rates by acquiring the IRF at maximum data rates with >96% non-

zero events. The FLIM images will also improve in clarity once full pixel 

timing calibration is applied, such as integral non-linearity and 

differential non-linearity corrections  [13]. The sample decay from the 

FLIM image is shown in Fig. 6. The time window is 14 ns wide and 8 bit 

TDC time-correlated event were used at 55ps time resolution. Decay 

pre-pulse appearing at ~2 ns in Fig. 6. is related to the optical setup 

(either specimen or emission path). Pre-pulse does not appear on any 

of the IRFs acquired. 

We tested data rates under a variety of TDC configurations and the 

results are outlined in Table 1. We were able to maintain 320 MB/s 

data rate securing count rates of 500 Mcps in 4 bit TDC. The upper limit 

is the current readout rate of MF32 from FPGA which is 500000 

frames per second. We succeeded in maintaining this rate for the 4 bit 

TDC size and 4 bit single photon count frames. Our tests were 

performed on 30 × .1 s acquisitions. We interleave acquisitions with 

histogramming to reduce loading on the computer memory. For each 

.1s of acquisition, histogramming takes approximately 1s. Our aim is to 

reduce this by deploying faster histogramming routines, possibly 

involving graphics processing units (GPUs). Our extensive tests show 

that 320 MB/s is broadly maintained for 1 hour tests, standard 

deviation of the data rate variation is 6 MB/s. We found that USB3 

cabling plays a crucial role. The quality of cables varies and we found 

that Point Grey Research ACC-01-2300 3m USB3 cable to give more 

consistent results. As USB3 becomes more adopted cabling is unlikely 

to be an issue. Computer architecture deployed is also important. 64 

bit operating system should be used with minimum 16 GB dynamic 

memory. 

 

Fig. 5.  Convallaria majalis fluorescence intensity image from the CCD 

(50 ms integration time) is shown on the left and three FLIM images to 

the right come from white squares in the color CCD image. The MF32 

FLIM image data was acquired in 3 s. 

As expected, the decay for 4 bit TDC transfer is coarser than the 

decay for 10 bit TDC transfer, as shown in Fig. 7. It should also be noted 

that for 100 MHz repetition rate, 8 bit TDC for 14 ns time window has 

the same coarseness as full 10 bit TDC for 56 ns time window. 4 bit 

TDC transfer has higher number of photons per bin, because 16 bins 

cover 14 ns time window as opposed photon counts being spread over 

256 bins in 8 bit TDC transfer over the same 14 ns time window. So 

despite the loss in time resolution, one may obtain a decay curve 

sooner in 4 bit TDC transfer. The problem is more complex, because 

both the time resolution and the number of photon events in the 

histogram affect the lifetime estimation accuracy. Prior work shows 

promising prospects for histogramming with similar coarseness to 4 

bit TDC transfer  [17,18]. 

We have demonstrated ultra-fast TCSPC event code transfer from 

the CMOS SPAD array. As mentioned above, our aim is to deploy this 

sensor in a variety of physics, biology and pre-clinical applications. It is 

important to note that the most beneficial implementation for MF32 

will be the one which amplifies the fill factor, as this ensures low dark 

count rate (DCR) due to small SPAD area whilst reducing 

photobleaching and maintaining a high count rate. Also, the high count 

rates demonstrated here indicate what should be expected from future 

TCSPC sensor cameras over USB3 or similar links. Lastly, top range 

FPGA architectures have more than 50MB of static RAM available on-

chip (at the time of writing) allowing fast parallelized read-modify-

write histogramming of at least 25000 TCSPC pixels.   

 

Fig. 6. Fluorescence decay curve from FLIM image and associated reduced χ2 error. 

 

TCSPC event 

code size 

Time 

window 

size 

Data rate Achieved 

count rate 

10 bit 56 ns 320 MB/s 160 Mcps 

8 bit 56 ns 320 MB/s 310 Mcps 

8 bit 14 ns 320 MB/s 310 Mcps 

4 bit 14 ns 260 MB/s 500 Mcps 

Table 1. Data rates and count rates for 10 bit, 8 bit and 4 bit TDC 

modes. 

 

Fig. 7. Decay curves for a sample pixel for variety of TDC sizes. 
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14.   N. Krstajić, S. Poland, D. Tyndall, R. Walker, S. Coelho, D. D. Li, 

J. Richardson, S. Ameer-Beg, and R. Henderson, "Improving 

TCSPC data acquisition from CMOS SPAD arrays," in (2013), Vol. 

8797, pp. 879709–879709–8. 

15.   S. Preus, K. Kilså, F.-A. Miannay, B. Albinsson, and L. M. 

Wilhelmsson, "FRETmatrix: a general methodology for the 

simulation and analysis of FRET in nucleic acids," Nucl. Acids 

Res. gks856 (2012). 

16.   S. Preus, "DecayFit - Fluorescence Decay Analysis Software 1.3, 

FluorTools, www.fluortools.com," (2014). 

17.   M. Köllner and J. Wolfrum, "How many photons are necessary 

for fluorescence-lifetime measurements?," Chemical Physics 

Letters 200, 199–204 (1992). 

18.   C. J. de Grauw and H. C. Gerritsen, "Multiple Time-Gate 

Module for Fluorescence Lifetime Imaging," Appl. Spectrosc., 

AS 55, 670–678 (2001). 

 


