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ABSTRACT This paper presents a new application of the multiple-input operational transconductance
amplifier (MI-OTA). The MI-OTA has been used to realize a first-order universal filter which shows that
the first-order transfer functions such as low-pass, high-pass, and all-pass filters can be obtained easily from
a single topology by applying the input signal to the appropriate terminals. Moreover, both non-inverting and
inverting transfer functions of all filtering functions can be obtained. The pole frequency of all filters can
also be controlled electronically. The first-order all-pass filters have been selected to realize high-quality
band-pass filter. For low-voltage supply operation and extremely low power consumption, the proposed
MI-OTA is realized by the multiple-input bulk-driven MOS transistor technique with transistors operating
in subthreshold voltage region. The circuit has been simulated using the 0.18 µm TSMC CMOS technology
with 0.5 V of supply voltage and it consumes 29.77 nW of power for 10 nA nominal setting current. The
post-layout simulation results show that the applications of MI-OTA agree well with theory.

INDEX TERMS Analog filter, operational transconductance amplifier, analog circuit, low-voltage,
low-power CMOS.

I. INTRODUCTION
For first-order filters, there are three filtering functions that
are possible for realization, namely low-pass filter (LPF),
high-pass filter (HPF), and all-pass filter (APF). The LPF and
HPF are the well-known networks that can be applied to elec-
tronic, communication and control systems. The first-order
LPF and first-order HPF, the so-called lossy integrator and
lossy differentiator, can be used to realize high-order fil-
ters such odd-order filters that cascaded using biquads [1],
and proportional-integral-derivative (PID) controller [2]. The
APFs, the so-called phase shifter circuits, are the network that
passes all frequencies equally inmagnitude, but its phase rela-
tionship is changed along with variation of the frequencies.
The first-order APF can be applied to realize high-quality
(Q) factor band-pass filter (BPF) [3], quadrature oscillator,
and multiphase oscillator [4]. There are many universal filters
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that can realize first-order APF, LPF, and HPF into a single
topology available in open literature [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39]. These first-order
universal filters can be classified into three mode-operations,
namely current-mode (CM) circuits [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], voltage-
mode (VM) circuits [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], and mixed-mode (MM)
circuits [35], [36], [37], [38], [39].

This work is focused on VM filter that should
offer high-input and low-output impedance. Considering
first-order universal filters in [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], [38], and [39], only CM universal filters
in [5] and [14] can realize six first-order transfer functions
into single topology, namely non-inverting of LPF, HPF, APF,
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FIGURE 1. Electrical symbol of MI-OTA (a) and its schematic based on multiple-input bulk-driven differential pair with
source degeneration transistors (b).

and inverting of LPF, HPF, APF. These CMfilters are realized
based on multiple-output active devices such as current fol-
lower transconductance amplifier (CFTA) [5] and inverting
second-generation current conveyors (ICCIIs) [14]. However,
the use of multiple-output current of active device-based
circuits results in high power consumptions. The MM fil-
ters in [35], [36], [37], [38], and [39] can provide several
first-order transfer functions but the transfer functions of
CM, VM, trans-admittance (TAM), trans-impedance (TIM)
of MMfilters in [35], [36], [37], [38], and [39] do not provide
both non-inverting and inverting output signals. Some filters
such as [39] the input signal is applied via capacitor which
is not ideal for VM circuits. Considering VM filters in [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33], and [34], there is no first-order filters that can realize
both non-inverting and inverting transfer functions of LPF,
HPF and APF into a single circuit. The filters with available
non-inverting and inverting transfer functions may be offered
easily for applications such as cascaded of non-inverting and
inverting APFs for realizing high-Q band-pass filters [40], for
multiphase sinusoidal oscillator [41], [42], without additional
circuits. The multiple-input voltages of devices can provide
the advantages such as reduced number of active blocks
for applications [43], [44], that result to minimum power
consumption.

This work a new application of 0.5 V multiple-input
OTA to first-order universal filter has been proposed. The
multiple-input OTA can be easily obtained using multiple-
input bulk-driven MOS transistor (MI-BD MOST) technique
that increase the number of input terminals without increase-
ment of the power consumption of OTA. To show the advan-
tages of multiple-input OTA, it has been used to realize
first-order VM universal filter. Unlike previous VM universal
filters, the proposed universal filter provides six first-order
transfer functions into single topology, namely non-inverting

of LPF, HPF, APF and inverting of LPF, HPF, APF. The pole
frequency of all filters can be controlled electronically. The
proposed filters have been used to realized high-Q band-pass
filter to confirm the new circuit.

FIGURE 2. Symbol of MI-BD MOS transistor (a) and its realization (b).

II. PROPOSED CIRCUIT
A. MULTIPLE-INPUT OTA
The symbol of the multiple-input OTA (MI-OTA) is shown
in Fig. 1 (a) and its transfer characteristic in ideal case can be
expressed by:

Iout = gm (V+1 + V+2 − V−1 − V−2) (1)

where gm is the transconductance gain, V+1 and V+2 are the
non-inverting input voltages, V−1 and V−2 are the inverting
input voltages, and Iout is the output current.

Fig. 1 (b) shows the CMOS implementation of theMI-OTA
based on multiple-input bulk-driven differential pair with
source degeneration transistors, which was experimentally
verified and first presented in [45]. The differential pair
is based on multiple-input bulk-driven technique (MI-BD).

VOLUME 11, 2023 49807



F. Khateb et al.: 0.5-V Nano-Power Voltage-Mode First-Order Universal Filter Based on MI-OTA

The electrical symbol of the MI-BD MOS transistor and its
realization are shown in Fig. 2 (a) and (b), respectively. The
device consists of a BDMOS transistor and a capacitive volt-
age divider/analog summing circuit, composed of capacitors
CBi. In general case i = 1. . . N, but for the particular realiza-
tion applied in this work N = 2. The capacitors are shunted
with large resistances RLi, that provides proper biasing of the
bulk terminal of the MI-BD MOS for DC. The resistances
are realized as anti-parallel connection of two minimum-size
MOS transistors ML operating in cutoff region, that provides
sufficiently high resistance with minimum silicon area. For
frequencies larger than 1/2πRLiCBi, the capacitors dominate
over the resistances, and assuming the input capacitance of
the MOS transistor seen from the bulk terminal is much less
than CBi, the voltage Vb at the bulk terminal of MI-BD MOS
can be expressed as:

Vb =

∑N

i=1

CBi
C∑Vi (2)

where C∑ is the sum of all capacitances CB.
Overall, the OTA in Fig.1(b) use a typical current mirror

topology. Its input differential pair is composed of MI-BD
MOS transistors M1 and M2. Note, that except increasing
the number of inputs, the capacitive voltage divider discussed
above increases the input linear range of the OTA. The input
linear range is further increased using the BD transistorsM11,
M12, which operate in triode region, and act as source degen-
erative resistors. Note, that the bulk terminals of M1 and M11
(M2 andM12) are tied together, which allows maintaining the
same VBS voltages for M1-M2 and M11-M12 with common-
mode variations, while the sameVGS voltages are provided by
connecting all gates of the above transistors to the auxiliary
biasing voltage VB. This allows maintaining constant rela-
tionship of transconductances of the above transistors, even
for variations of the common-mode voltage. Similar solution
is known for conventional gate-driven (GD) transistors [46],
[47], however, here, the BD devices are used. It can be shown
that optimum linearity of the circuit is achieved when the
following condition is met:

k =
(W/L)11.12

(W/L)1,2
= 0.5 (3)

where W and L are the channel width and length respec-
tively: This condition is the same as for the gate driven
counterpart of the input pair, operating in a weak inversion
region [47].

Assuming that current gain of all current mirrors in the
OTA structure is equal to unity, all capacitors CB are equal
to each other, and neglecting other second order effects, the
OTA transconductance can be expressed as:

gm ∼=
1
2
η ·

4k
4k + 1

·
Iset
npUT

(4)

where η = gmb1,2/gm1,2is the bulk to gate transconductance
ratio for the input transistors M1 and M2, np is the subthresh-
old slope factor for p-channel MOS transistors, UT is the

FIGURE 3. Proposed voltage-mode first-order universal filter.

thermal potential and Iset is the biasing current, which can
be used to tune the value of gm.
The input capacitive divider, the bulk-driven technique,

and the source-degenerative technique improve the circuit
linearity and increase its linear range but lead to decreasing
the voltage gain of the OTA. In order to increase this, gain the
MOS transistors M3-M13 were replaced by MOS composite
self-cascode transistors, that allows increasing their output
conductances, and consequently the voltage gain of the OTA,
while not limiting the output swing of the circuit.

The output resistance of the OTA can be approximated
as:

ro ∼= (gm6rds6rds6c) || (gm9rds9rds9c) (5)

and its DC voltage gain for optimum case (k = 0.5), and
with other assumptions made previously, is consequently
given by:

Av = gmro =
1
3
η ·

Iset
npUT

[(gm6rds6rds6c) || (gm9rds9rds9c)]

(6)

thus, asmentioned earlier, the voltage gain is improved thanks
to the self-cascode connections.

The input-referred noise of the MI-OTA, referred to one of
the differential inputs, can be expressed as:

v̄2n =
1
g2m

[
2 ¯I2n1,2

(
2gm11,12

gm1,2 + 2gm11,12

)2

+2 ¯I2n7,8

(
gm1,2

gm1,2 + 2gm11,12

)2

+
¯I2n11,12

(
2

gm1,2
gm1,2 + 2gm11,12

)2

+ 4 ¯I2n3−6 + 2 ¯I2n9,10

]
(7)

where the noise currents Ī2n are:

¯I2ni = 2qIDi +
1

fCOX

(
Kg2mi
WiLi

)
(8)

where IDi is the drain current (in this design equal to Iset),
COX is the oxide capacitance per unit area and K is the flicker
noise constant (different for n- and p-channel transistors).
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FIGURE 4. Proposed high-Q bandpass filter.

FIGURE 5. Improved high-Q bandpass filter.

As it can be concluded from (7), the input referred noise
is increased due to the MI-BD technique, however, the input
linear range is increased in the same proportion, thus, the
resulting dynamic range remains the same, as for conven-
tional OTA, based on a GD differential pair with source
degeneration.

B. PROPOSED VOLTAGE-MODE FIRST-ORDER UNIVERSAL
FILTER
Fig. 3 shows the proposed voltage-mode first-order universal
filter. The circuit consists of two MI-OTAs and one grounded
capacitor. It should be noted that the input voltages Vin1,
Vin2, Vin3, and Vin4 are supplied through the high-impedance
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terminals of MI-OTAs, thus it requires no additional buffer
circuits while the output impedance can be given by 1/gm2.
Using (1) and nodal analysis, the output voltage of Fig. 3 can
be expressed by:

Vo =
sC1 (Vin3 − Vin4) + gm1 (Vin1 − Vin2)

sC1 + gm1
(9)

The filtering functions of LPF, HPF, and APF can be obtained
by appropriately applying the input signals with the condition
expressed in Table 1.

It is evident that the proposed universal filter provides
first-order transfer functions of non-inverting LPF, HPF, APF
and inverting LPF, HPF, APF. Hence six transfer functions
can be obtained into single topology which can be easily pos-
sible using MI-OTA that offers multiple-input non-inverting
and inverting terminals.

The pole frequency of all filters can be given by:

ωo =
gm1
C1

(10)

It is clear that the pole frequency can be controlled electron-
ically by gm1 through the bias current Iset1.

TABLE 1. Obtaining Variant Filtering Functions Of The First-Order
Universal Filter.

C. NON-IDEALITY ANALYSIS
Using non-idealities of OTA in [48], transconductance gain
in the frequency range near its cut-off frequency can be
expressed by

gmn = gm (1 − µs) (11)

where µ = 1/ωg and ωg is the first pole of the OTA.
Using (11), (1) can be rewritten as

Iout = gmn (V+1 + V+2 − V−1 − V−2) (12)

Using (12), the output voltage of Fig. 3 become

Vo

=

sC1 (Vin3 − Vin4)+ sC1

(
1 −

gm1µ1
C1

)
+gm1 (Vin1 − Vin2)

sC1

(
1 −

gm1µ1
C1

)
+ gm1

(13)

FIGURE 6. The layout of the MI-OTA.

FIGURE 7. MI-OTA output current Io (a) and transconductance gm
(b) versus Vin for different Iset.

It can be made negligible by satisfying the condition:

gm1µ1

C1
≪ 1 (14)

Considering the parasitic parameters using the modeling the
non-idealities in the OTA in [48], the output resistance Ro and
output resistance Co are considered

Vo =
sC ′

1 + Go1 (Vin3 − Vin4) + gm1 (Vin1 − Vin2)

sC ′

1 + Go1 + gm1
(15)

where C ′

1 = C1 + Co1, Go1 = 1
/
Ro1, Co1 and Ro1 are

respectively the parasitic capacitance and parasitic resistance
of OTA1.
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FIGURE 8. Frequency responses of gain and phase: (a,b) LPF; (c,d) HPF; (e,f) APF.

It should be noted that the parasitic capacitance effect of
Co1 can be reduced by using the value of C1 larger that the
value of parasitic capacitance Co1 and the parasitic resistance
effect of Ro1 (Ro1 = 1

/
Go1) can be eliminated by using the

value of gm1 greater that the value of parasitic resistance Ro1.

III. APPLICATION EXAMPLES
The proposed first-order universal filter has been used to real-
ize a high-quality factor (high-Q) bandpass filter. To show the
advantages of the proposed first-order universal filter, non-
inverting and inverting first-order APFs that can realize into a
single topology have been used. The transconductances gm1,
gm2 and C1 realize the first APF, transconductances gm3, gm4
and C2 realize the second APF, and the transconductance gm5
and R1 realize the amplifier. Considering amplifier section,
the output voltage of amplifier can be given by

Vout = gm5R1 (Vin + Vo) (16)

The output voltage Vout is applied to the input of the cascaded
APF. Using the condition in Table 1, the output voltageVo can
be given by

Vo = −

(
sC1 − gm1
sC1 + gm1

)(
sC2 − gm3
sC2 + gm3

)
Vout (17)

Letting C1 = C2 = C and gm1 = gm3 = gm, and substituting
(17) to (16), we have

Vout = gm5R1

(
Vin −

(
s2C2

− 2sCgm + g2m
s2C2 + 2sCgm + g2m

)
Vout

)
(18)

The transfer function can be expressed by

Vout
Vin

=

(
gm5R1

1 + gm5R1

)
(sC + gm)2

s2C2 + 2sCgm
(
1−gm5R1
1+gm5R1

)
+ g2m

(19)

This transfer function can be approximated as a bandpass
transfer function near the center frequency [49].
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FIGURE 9. Frequency responses of gain and phase: (a,b) LPF; (c,d) HPF; (e,f) APF with different Iset.

The quality factor (Q) of bandpass filter can be given by

Q =
1
2

(
1 + gm5R1
1 − gm5R1

)
(20)

It is evident that theQ of filter can be adjusted be amplifier
gm5R1 with the condition of gm5R1 ≪ 1, which can be
adjusted by gm5.

Letting gm
/
C = ωo and using (20), (19) can be rewritten

as

Vout
Vin

=
1
4

(2Q− 1)
(s+ωo)

2

Q

s2 + s
(

ωo
Q

)
+ ω2

o

(21)

Thus, approximated bandpass transfer function can be
obtained.

It should be noted from (19) and (21) that the numerator
of transfer function has double zero at a frequency ωo which
departs from an ideal bandpass filter that the zero is located
at origin. If an ideal bandpass filter function is required, the
output of Fig. 4 can be connected by cascaded first-order LPF
and first-order HPF as shown in Fig. 5. From Fig. 5, using
Table 1 and letting gm6 = gm8 = gm, C3 = C4 = C , the
output voltage Vout1 can be given by

Vout1 =
sCgm

(sC + gm)2
Vout (22)

Using (19), (22) become

Vout1
Vin

=

(
gm5R1

1 + gm5R1

)
sCgm

s2C2 + 2sCgm
(
1−gm5R1
1+gm5R1

)
+ g2m

(23)
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FIGURE 10. The transient response of the APF (a) and the spectrum of the
Vo using FFT (b).

FIGURE 11. The transient response of the APF with different Iset (a) and
the THD with different Vin (b).

It can see that the zero is located at origin, thus an ideal
bandpass filter function can be obtained.

FIGURE 12. Histogram of the THD (a) and power consumption of the
APF (b).

IV. POST-LAYOUT SIMULATION RESULTS
The circuit was designed in the Cadence platform and sim-
ulated with the Spectre simulator of the Analog Design
Environment, using a 0.18 µm CMOS process from TSMC.
The OTA transistor aspect ratios W/L (µm/µm) were: M1,
M2 = 2 × 15.1, M3-M6 = 2 × 10.1, M3c-M6c = 10/1,
M7-M10, M13 = 2 × 15.1, M7c-M10c, M13c = 15/1, M11,
M12 = 15/1, ML =5/4 and the input metal-insulator-metal
(MIM) capacitor CBi was 0.5 pF. The voltage supply is 0.5V
(±0.25V for purpose of simulation), the bias voltage VB is
−100mV, and for setting current Iset = 10nA, the power con-
sumption of the OTA is 29.77 nW. The layout of the MI-OTA
is shown in Fig. 6 and the chip area is 0.01153 mm2. The DC
voltage gain of the MI-OTA was 31.17 dB, common mode
rejection ratio was 90.05 and power supply rejection ratio was
37.26 dB [45].

Fig. 7 displays the OTA output current (a) and transconduc-
tance (b) as a function of the input voltage Vin for different
values of the setting current Iset = (2.5, 5, 10, 20, 40) nA
with 20pF load capacitance. The gm varies from 1.65nS to
124nS and the high linearity is preserved within the range
of ±300mV regardless the Iset.

For the proposed voltage-mode first-order universal fil-
ter in Fig. 3, the capacitor was selected C1 = 20 pF and
the setting current Iset1 = Iset2 = 10nA (gm = 28.3nS) for
designed cut-off frequency 222 Hz. The frequency responses
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FIGURE 13. Frequency responses of gain and phase: (a,b) LPF; (c,d) HPF; (e,f) APF with PVT corners.

of the proposed filter for gain and phase are shown in Fig. 8.
The simulated value of the cut-off frequency is observed to
be 220 Hz and it is closed to the calculated one. Fig. 9 shows
the frequency response of gain and phase with Iset2 = 10nA
and different Iset = Iset1 = (2.5, 5, 10, 20, 40) nA. The cut-off
frequency was 57 Hz, 112 Hz, 220 Hz, 430 Hz and 835 Hz,
respectively.

Fig. 10 (a) shows the transient response of the APF with
Iset1,2 = 10nA and applied sine wave input signal with
40mVpp@ 220Hz while (b) shows the spectrum of the output
signal Vo using the Fast Fourier Transform (FFT). The total
harmonic distortion was calculated as 0.36%. Fig. 11 (a)
shows the transient response of the APF with Iset2 = 10nA
and different setting current Iset1 = (2.5, 5, 10, 20) nA, the

THD was around 0.36%. Fig. 11 (b) shows the THD of the
APFwith Iset1,2 = 10nA and different applied sine wave input
signal @ 220Hz. The THDwas below 1% for 160mVpp input
signal.

Fig. 12 shows the histogram of the THD (a) and power
consumption (b) of the APF with Iset1,2 = 10nA and applied a
sinewave input signal with 40mVpp@220Hzwith 200Monte
Carlo analysis including mismatch and process variation. The
mean value of the THD is 0.4% while the standard deviation
is only 0.096%, the mean value of power consumption is
59.5nW and standard deviation is 1.08nW.

The Process, voltage and temperature corner analysis
(PVT) was provided with Iset1,2 = 10nA as shown in Fig. 13.
The process corners of the MOS transistors were fast-fast,
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FIGURE 14. Frequency responses of gain (a) and phase (b) of the high-Q
BPF.

FIGURE 15. Frequency responses of gain (a) and phase (b) of the high-Q
BPF when center frequency is tuned by Iset3.

slow-fast, fast-slow and slow-slow, the corners of the MIM
capacitor were fast-fast and slow-slow, the voltage corners
were VDD±10%VDD, temperature corners were −20 ◦C and

FIGURE 16. Frequency responses of gain (a) and phase (b) of the high-Q
bandpass filter when Q is tuned by Iset5.

60 ◦C. As it is evident the curves are very closed to each
other.

The proposed high-Q band-pass filter in Fig. 4 was simu-
lated with C1,2 = 50pF, the Iset1,2,4,3,5 = 10nA, the resistor
value was chosen as R= 1/gm = 35.3M�. The frequency and
phase are shown in Fig. 14.
To confirm the tuning capability of the BPF, Fig. 15

shows the frequency responses of gain and phase when
Iset1,2,4,5 = 10nA and center frequency is tuned by Iset3 = (10,
20, 40)nA. Fig. 16 shows the frequency responses of gain and
phase when Iset1,2,3,4 = 10nA and quality factor is tuned by
Iset5 = (9, 10, 11) nA.
The proposed first-order filter has been compared with

the previous works as shown in Table 2. The current-mode
first-order filter in [14], some voltage-mode first-order fil-
ters [29], [30], [34], and mixed-mode first-order filter in
[39] have been selected for comparison. The proposed filter
offers six transfer functions like [14], but the filter in [14]
uses multiple-output current ICCII which suffers from high
power consumption. Compared to [29], [30], [34], and [39],
the proposed filter offers more transfer functions and lower
supply voltage and power consumption. Compared to [29]
and [30], the proposed filter offers high-input impedance
for all transfer functions. Compared to [14], [30], [34],
and [39], this realization uses only grounded capacitor and
devoid of passive resistor. The proposed filter is the only
one that enjoys the lowest voltage supply and nW power
consumption.
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TABLE 2. Comparison table with previous first-order filters.

V. CONCLUSION
This paper presents a voltage-mode first-order universal fil-
ter using multiple-input OTAs. This work can express that
multiple-input OTA can easily offer six transfer functions of
first-order filters, namely three non-inverting transfer func-
tion of LPF, HPF, APF, and three inverting transfer function
of LPF, HPF, APF into single topology. The proposed filter
offers high-input impedance which is ideal for voltage-mode
circuits. The pole frequency of all filters can be controlled
electronically via the bias current. To show the advantages of
the proposed filter, it has been used to realize a high-Q band-
pass filter capable to work with extremely low voltage supply
and with nano power consumption that make it suitable for
modern nano-power portable electronics.
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