
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Faculty Publications

Department of Electrical and Computer
Engineering

January 2009

0.8-V supply voltage deep-submicrometer
inversion-mode In0.75 Ga0.25As MOSFET
Y. Q. Wu

W. K. Wang

O. Koybasi

D. N. Zakharov

E. A. Stach

See next page for additional authors

Follow this and additional works at: http://docs.lib.purdue.edu/ecepubs

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Wu, Y. Q.; Wang, W. K.; Koybasi, O.; Zakharov, D. N.; Stach, E. A.; Nakahara, S.; Hwang, J. C. M.; and Ye, P. D., "0.8-V supply voltage
deep-submicrometer inversion-mode In0.75 Ga0.25As MOSFET" (2009). Department of Electrical and Computer Engineering Faculty
Publications. Paper 1.
http://dx.doi.org/http://dx.doi.org/10.1109/LED.2009.2022346

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecepubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecepubs?utm_source=docs.lib.purdue.edu%2Fecepubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecepubs?utm_source=docs.lib.purdue.edu%2Fecepubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecepubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecepubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecepubs?utm_source=docs.lib.purdue.edu%2Fecepubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors
Y. Q. Wu, W. K. Wang, O. Koybasi, D. N. Zakharov, E. A. Stach, S. Nakahara, J. C. M. Hwang, and P. D. Ye

This article is available at Purdue e-Pubs: http://docs.lib.purdue.edu/ecepubs/1

http://docs.lib.purdue.edu/ecepubs/1?utm_source=docs.lib.purdue.edu%2Fecepubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages


700 IEEE ELECTRON DEVICE LETTERS, VOL. 30, NO. 7, JULY 2009

0.8-V Supply Voltage Deep-Submicrometer
Inversion-Mode In0.75Ga0.25As MOSFET

Y. Q. Wu, Student Member, IEEE, W. K. Wang, O. Koybasi, D. N. Zakharov, E. A. Stach, S. Nakahara,
J. C. M. Hwang, Fellow IEEE, and P. D. Ye, Senior Member, IEEE

Abstract—We report the experimental demonstration of deep-
submicrometer inversion-mode In0.75Ga0.25As MOSFETs with
ALD high-k Al2O3 as gate dielectric. In this letter, n-channel
MOSFETs with 100–200-nm-long gates have been fabricated.
At a supply voltage of 0.8 V, the fabricated devices with
200–130-nm-long gates exhibit drain currents of 232–440 μA/μm
and transconductances of 538–705 μS/μm. The 100-nm device
has a drain current of 801 μA/μm and a transconductance of
940 μS/μm. However, the device cannot be pinched off due to se-
vere short-channel effect. Important scaling metrics, such as on/off
current ratio, subthreshold swing, and drain-induced barrier low-
ering, are presented, and their relations to the short-channel effect
are discussed.

Index Terms—Atomic layer deposition, high-k, InGaAs,
MOSFET.

I. INTRODUCTION

THE CONTINUOUS device scaling and performance im-
provements required by the International Technology

Roadmap for Semiconductors are faced with a grand challenge
as conventional Si CMOS scaling comes to its fundamental
physical limits. As several new technologies, such as high-k
metal gate integration, nonplanar Si transistors, and strained-
channel materials, have been developed to maintain Moore’s
law, tremendous efforts have been spent to look into those alter-
native channel materials “beyond Si,” such as germanium and
III–V compound semiconductors. Benefiting from their high
electron mobility and velocity, III–V high-electron-mobility
transistors or quantum-well transistors with In-rich InGaAs,
InAs, or InSb channels have been demonstrated with superior
device metrics such as transconductance, cutoff frequency, and
gate delay [1]–[3]. However, the gate leakage of these transis-
tors limits their applications in large-scale integrated circuits.

In the quest for perfect dielectrics for III–V semiconduc-
tors, significant progress has recently been made on inversion-
type enhancement-mode InGaAs NMOSFETs, operating under
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Fig. 1. (a) Cross section of an inversion-type enhancement-mode
Al2O3/In0.75Ga0.25As MOSFET. (b) TEM image of a similarly fabricated
device with 10-nm Al2O3 after 750 ◦C RTA activation. (Inset) High-resolution
TEM shows sharp Al2O3/In0.75Ga0.25As interface remaining after full
device fabrication, including 750 ◦C RTA activation process.

the same mechanism as Si MOSFETs, using high-k gate di-
electrics. The promising dielectric options include ALD Al2O3

[4]–[7], HfO2 [7]–[9], HfAlO [7], [10], [11], ZrO2 [12] and
in situ molecular beam epitaxy (MBE) Ga2O3(Gd2O3)
[13]–[15]. Most recently, a record-high inversion current above
1 A/mm has been achieved for long-channel Al2O3/InGaAs
MOSFETs [5]. In this letter, we present the experimental results
of In0.75Ga0.25As MOSFETs with gate lengths down to 100 nm
and a supply voltage as low as 0.8 V. The on/off current ratio,
subthreshold swing (SS), and drain-induced barrier lowering
(DIBL) are affected by the short-channel effect.

II. DEVICE STRUCTURE AND FABRICATION

Fig. 1(a) shows the cross section of an ALD Al2O3/
In0.75Ga0.25As MOSFET. A 500-nm p-type 4×1017/cm3 buf-
fer layer, a 300-nm p-type 1×1017/cm3 In0.53Ga0.47As layer,
and a 12-nm strained p-type 1 × 1017/cm3In0.75Ga0.25As
channel were sequentially grown by MBE on a 2-in p+-InP
wafer. After surface cleaning and ammonia passivation, the
wafers were transferred via room ambient to an ASM F-120
ALD reactor. A 30-nm-thick Al2O3 encapsulation layer was
deposited at a substrate temperature of 300 ◦C. All patterns
were defined by a Vistec VB-6 UHR electron-beam lithography
(EBL) system. The source and drain regions of the MOSFETs
were formed by selective implantation of 3 × 1013 cm−2 at
40-keV Si with the designed range of 43 nm and annealed at
650 ◦C or 750 ◦C for 10 s in N2 for activation. Compared
with the values in [5], relatively low implantation energy and
dose were chosen here to avoid the penetration of implanted
Si ions through the 280-nm-thick electron-beam resist used
to protect the channel regions. After (NH4)2S treatment for
10 min, another 5-nm Al2O3 was also grown by ALD after
stripping away the encapsulation oxide layer. The ohmic source
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Fig. 2. (a) Transfer characteristics of In0.75Ga0.25As MOSFETs with gate
lengths of 100 and 150 nm. These devices are after 750 ◦C RTA activation.
(b) Subthreshold characteristics of In0.75Ga0.25As MOSFETs at Vds = 0.05
and 0.8 V with gate lengths of 110, 130, 160, and 200 nm, respectively.
The junction leakage current is significantly reduced by reducing the activation
temperature from 750 ◦C to 650 ◦C.

and drain contacts were made by electron-beam evaporation of
AuGe/Ni/Au and annealing at 400 ◦C for 30 s in N2. The gate
electrode was made by electron-beam evaporation of Ni/Au.
The fabricated MOSFETs have nominal gate lengths Lg’s of
100, 110, 120, 130, 140, 150, 160, 170, 180, and 200 nm
defined by the source–drain implant separation. The metal gates
were designed to be 200 nm longer than the Lg with 100-nm
extension on each side. The 100-nm extension guarantees the
device structure shown in Fig. 1(a) since the EBL realign-
ment accuracy is better than 50 nm. The device process is
not self-aligned. Fig. 1(b) shows the transmission electron
microscopy (TEM) images of the cross section of Al2O3/
In0.75Ga0.25As/In0.53Ga0.47As on a similarly finished device.
The sheet resistance and contact resistance of the implanted
source and drain regions are determined to be ∼300 Ω/square
and ∼500 Ω · μm, respectively, by the transfer length method.

III. RESULTS AND DISCUSSION

Fig. 2(a) shows the transfer characteristics of 100- and
150-nm-gate-length In0.75Ga0.25As MOSFETs. The maximum
supply voltage VDD is 0.8 V. At the gate–source voltage Vgs =
Vds = 0.8 V, the measured on-currents (Ion’s) are 801 and
354 μA/μm for 100- and 150-nm devices. The 100-nm device
cannot be turned off at any gate bias with drain current of
170 μA/μm at Vds = 0.8 V and Vgs = 0 V, suggesting that the
p-doped channel region is punched through by the implanted
n+ source and drain and/or that the source/drain is excessively
deep implanted. The punchthrough effect becomes less severe
for devices with gate lengths of 130 nm or longer because their
Lg’s are more than twice the depletion width in the p-doped
channel region from the n+ source and drain. Their Lg’s are
also exactly three times or more than the designed source/drain
implantation range of 43 nm. The 130–200-nm devices are
operated in enhancement mode with the threshold voltage VT

of 0.14–0.2 V, measured from the transfer characteristics in the
linear region at drain–source voltage Vds = 0.05 V. The max-
imum extrinsic transconductances Gm’s are 940 μS/μm for a
100-nm device and 660 μS/μm for a 150-nm device. To the best
of the authors’ knowledge, these values are among the high-
est Gm’s ever reported for surface-channel III–V MOSFETs
[5], [15]. The intrinsic Gm for a 100-nm device is estimated

TABLE I
MAJOR DEVICE PARAMETERS OF In0.75Ga0.25As MOSFETs

to be 1.77 mS/μm since the measured contact resistance is
approximately 500 Ω · μm. Compared with that in [5], Gm

is increased to 660 from 350 μS/μm by reducing the Al2O3

thickness from 10 to 5 nm and shrinking the gate length from
0.4 μm to 150 nm. The observed linear scaling of Gm and Ion

versus Lg between 0.4 and 40 μm does not sustain any longer
in the deep-submicrometer region. To maintain the ON-state
device performance at low-power operation, more aggressive
reduction of the effective oxide thickness is needed.

Fig. 2(b) shows the subthreshold characteristics of drain
current, Id versus Vgs, for four representative devices with 110-,
130-, 160-, and 200-nm gate lengths at Vds = 0.8 and 0.05 V.
The devices with 130-nm or shorter gate length show severe
short-channel effect, as discussed previously. Strictly speaking,
at Vds = 0.8 V and Vgs = 0, only the 200-nm device is really
turned off if the 1 μA/μm metric is used. Shallow junctions
or more sophisticated halo implantations are needed to fab-
ricate sub-200-nm-surface-channel In0.75Ga0.25As MOSFETs
with acceptable OFF-state performance. The saturation of the
decrease of Id at Vgs < 0 is due to the substrate leakage
current induced from the reversely biased drain junction [16].
The junction leakage is significantly reduced by reducing the
implantation activation temperature from 750 ◦C to 650 ◦C.
The similar effect was also reported in [17]. Meanwhile,
ON-state performance is only slightly degraded by reducing
the activation temperature from 750 ◦C to 650 ◦C. The typical
gate leakage current for these devices is below 1 pA/μm at
−0.8 V < Vgs < 0.8 V and Vds = 0.8 V, which is about eight
orders of magnitude lower than the drain current. The 5-nm
Al2O3 leakage current density is < 10−4 A/cm2 at the device
operation biases.

Table I summarizes the Ion, Gm, and the scaling metrics
of SS, DIBL, and Ion/Ioff as functions of Lg obtained from
Id. All these devices were activated at 650 ◦C. Ion/Ioff is
chosen as Ion(Vds = 0.8 V, Vgs = VT + 2/3VDD)/Ioff(Vds =
0.8 V, Vgs = VT − 1/3VDD) with 1 μA/μm metric for VT and
0.8V for VDD [2], [18]. It can be seen that SS and DIBL
increase and Ion/Ioff decreases with decreasing Lg . The values
start to fall apart dramatically at Lg = 130 nm or shorter,
indicating that severe short-channel effect occurs. These scaling
metrics could be further improved by nonplanar geometry, junc-
tion engineering, and better interface quality. With minimum
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short-channel effects at Lg = 200 nm, SS ∼ 100 mV/decade is
obtained from Is. It is smaller than the value obtained from Id.
The SS from Is is more intrinsic without the junction leakage
degradation. Without considering the SS degradation by short-
channel effects, the upper limit of the interface trap density Dit

is estimated to be 4 × 1012/cm2 · eV for the present devices
from the m factor, defined as 60 mV/decade · (1 + Cit/Cox).
Here, Cit = qDit is the interface trap capacitance, and Cox is
the oxide capacitance.

IV. CONCLUSION

Inversion-mode In0.75Ga0.25As MOSFETs with gate lengths
of 100–200 nm were demonstrated experimentally. At a supply
voltage of 0.8 V, the fabricated devices with 200–130-nm-
long gates exhibited drain currents of 232–440 μA/μm
and transconductances of 538–705 μS/μm, respectively. The
100-nm device has a transconductance as high as 940 μS/μm,
although the device cannot be pinched off due to severe short-
channel effect. With better demonstrated ON-state performance
of inversion-mode MOSFETs on In-rich InGaAs channels,
more work is needed to study the fundamental limitations of
the narrow energy gap of In-rich InGaAs and the OFF-state
performance related with interface trap densities.
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