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Transformations involving selective 1,2-halogen migration have not been reported until
recently,1 when Iwasawa and then Fürstner disclosed 1,2-iodine,2 and 1,2-iodine and -
bromine migration,3 respectively, in alkynyl halides to produce fused haloarenes (eq 1).
Furthermore, Liu showed a 1,2-iodine shift in a Ru alkylidene complex (eq 2).4 Both
transformations involved metal carbenoid intermediates and were used in the synthesis of
carbocycles. To the best of our knowledge, no syntheses of halogenated heterocycles
involving halogen migration have been reported to date. Herein, we wish to report Au-
catalyzed selective 1,2-migration of iodine, bromine, and chlorine, proceeding via a
halirenium intermediate, leading to 3-halofurans in good to excellent yields (eq 3).
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Halofurans, important building blocks, are traditionally obtained by electrophilic
halogenation of furans,5 via halogen-induced cyclizations6 or cyclocondensations of
halogenated precursors.7 Most of these approaches require employment of strongly
electrophilic reagents, thus limiting their application to substrates lacking acid-sensitive
functionalities. We have recently reported the Cu-catalyzed synthesis of 3-thiofurans, which
involved selective 1,2-migration of a thio group in thioallenyl ketones, proceeding via a
thiirenium intermediate (eq 4).8

(4)

We hypothesized that replacement of sulfur with halogen might provide convenient access
to 3-halofurans. Inspired by this idea, we subjected bromoallenyl ketone 1a9 to a Cu-
catalyzed cycloisomerization (eq 5),10 which indeed led to formation of 3-bromofuran 2a,
albeit in poor yield (20–30%). In contrast, AgBF4, which proved to be efficient in the
cycloisomerization of different allenyl ketones,11 did not catalyze this reaction at all.
Employment of PtCl2, however, produced 3-bromofuran 2a in 50% yield along with small
amounts of 2-bromofuran 3a. To our delight, employment of AuCl3 afforded 3-bromofuran
2a in 86% yield with high selectivity (Table 1, entry 1),12 which was further improved by
elevation of reaction temperature (entries 4 and 5). Surprisingly, switching solvent to THF
caused a dramatic change in selectivity, affording 2-bromofuran 3a as a major product
(entry 6). The latter was also exclusively obtained in the presence of Au(PEt3)Cl (entry 8).

(5)

We propose two complementary pathways for selective formation of 2 and 3 (Scheme 1).
According to path A, oxophilic Au(III) species coordinates to oxygen (a) provoking
intramolecular Michael addition of Br to the enone moiety, leading to bromoirenium
zwitterion b,13 which, via subsequent addition–elimination, furnishes 3-bromofuran 2 (path
A). Alternatively, the rather more π-philic Au(I) species coordinates to the distal double
bond of allene (c), activating it toward intramolecular attack of oxygen followed by
tautomerization to form gold carbenoid species d. The latter, after 1,2-hydride shift,14

furnishes 2-bromofuran 3 (path B).

To gain additional support for path A, we tested Brønsted and Lewis acids as potential
catalysts for this transformation. It was found that this reaction proceeds selectively in the
presence of AlCl3 and even silica gel, affording 3-bromofuran 2a, albeit in low yield.10 The
reversal of regioselectivity observed in the AuCl3-catalyzed reaction in THF (Table 1, entry
6) can be attributed to a decrease of oxophilicity of the Au(III) complex in ethereal solvent.
To verify whether selective formation of 2-bromofuran 3 proceeds via 1,2-hydride shift
(path B), we subjected deuterated allenyl ketone d-1k to the cycloisomerization conditions
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(eq 6). This reaction produced a mixture of 2- and 3-bromofurans in a ratio of 2.4:1 without
detectable loss of deuterium,15 thus strongly supporting path B.16,17

(6)

Next, we investigated the scope of this cascade transformation. Thus, differently substituted
haloallenyl ketones were subjected to Au(III)-catalyzed cycloisomerization (eq 7, Table 2).
It was found that a variety of alkyl- and aryl-substituted bromoallenyl ketones and aldehydes
underwent smooth cycloisomerization, affording 3-bromofurans in good to excellent yields
(entries 1–5). Remarkably, this method allowed for efficient synthesis of halofurans
possessing hydroxymethyl (2e) and alkene (2f) functionalities, which are incompatible with
known methods employing electro-philic reagents. It was found that fully substituted
iodoallenyl ketones reacted more slowly than their bromo analogues, producing
corresponding furans in good yield (entry 6). Gratifyingly, ambident disubstituted allenyl
iodides underwent exclusive iodine migration to afford 2-alkyl- and -aryl-substituted
iodofurans in 97 and 71% yields, respectively (entries 7 and 8). Chloroallene 1j also
underwent this transformation to produce 3-chlorofuran 2j.18

(7)

In summary, we have demonstrated Au(III)-catalyzed 1,2-iodine, -bromine, and -chlorine
migration in haloallenyl ketones, proceeding via a halirenium intermediate. This chemistry
is interesting not only as a novel cascade transformation but also as a mild, selective, and
efficient approach to different types of 3-halofurans, some of which are not available via
existing methodologies.
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18. Much more sluggish reaction of 1j is in accordance with decreased ability of the Cl atom to form
halirenium species b (Scheme 1).
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Scheme 1. Proposed Pathways for the Synthesis of Halofurans 2 and 3
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Table 1
Optimization of Au-Catalyzed Synthesis of Halofurans

entry catalyst (1–2 mol %) solvent (1 M) T (°C) 2:3a

1 AuCl3 toluene rt 95:5

2 AuCl3 toluene 0 88:12

3 AuCl3 toluene 40 97:3

4 AuCl3 toluene 50 98:2

5 AuCl3 toluene 70 98:2

6 AuCl3 THF rt 5:95

7 Au(PPh3)Cl toluene rt 16:84

8 Au(PEt3)Cl toluene rt <1:99

a
GC ratios.
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