1-(2-) Prime Ideals in Semirings

Pandarinathan Nandakumar
Department of Mathematics, Perunthalaivar Kamarajar Institute of Engineering and Technology, (Government of Puducherry Institution), Nedungadu, Karaikal 609603 (U. T. of Puducherry), India
e-mail : drpnandakumar@gmail.com

Abstract. In this paper, we introduce the concepts of 1-prime ideals and 2-prime ideals in semirings. We have also introduced m_{1}-system and m_{2}-system in semiring. We have shown that if Q is an ideal in the semiring R and if M is an m_{2}-system of R such that $\bar{Q} \bigcap M=\emptyset$ then there exists as 2-prime ideal P of R such that $Q \subseteq P$ with $P \bigcap M=\emptyset$.

1. Introduction

A semiring is a non-empty set R equipped with two binary opertions, called addition, + , and multiplication (denoted by juxtaposition), such that R is multiplicatively a semigroup and additively a commutative semigroup and that the multiplication is distributed across the addition both from the left and from the right. An element denoted by 0 is called the zero of R if $a+0=a$ and $0 a=a 0=0$ for all $a \in R$. A non-empty subset of a semiring R is called an ideal of R iff $a+b \in I$, $r a \in I$, ar $\in I$ hold for all $a, b \in I$ and for all $r \in R$. The notions of left, right and two-sided ideals, as well as sums and products of such ideals are defined as usual. The word ideal will always mean a two-sided ideal. An ideal I of R is called a k-ideal if $a, a+b \in I$ implies $b \in I$ for any elements of $a, b \in R$. If A is an ideal of a semiring R then $\bar{A}=\{a \in R / a+x \in A$, for some $x \in A\}$ is called a k-closure of A. It can be easily verified that \bar{A} is a k-ideal (see [6]). If $A \subseteq R$, then the ideal (k-ideal) of R generated by A will be denoted $<A>\left(<A>_{k}\right)$. If $A=a$, we write $<a>$ instead of $<\{a\}>$ for convenience. In this paper we introduce the concepts of $1-(2-)$ prime ideals as well as $1-(2-)$ semiprime ideals. If R is semiring and P is an ideal of R then P is $0-(2-)$ prime ideal if A and B are ideals (k-ideals) of R such that $A B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. If R is a semiring and P is an ideal of R then P is 1-prime ideal if A is a k-ideal of R and B is an ideal of R such that $A B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. If R is a semiring and Q is an ideal of R,then Q is $0-(2-)$ semiprime ideal if A is an ideal (k-ideal) of R such that $A^{2} \subseteq Q$ implies $A \subseteq Q$. If R is a semiring and Q is an ideal of R then Q is 1 -semiprime if A is an ideal of R such that $\bar{A} A \subseteq Q$ implies $A \subseteq Q$. A semiring R is called fully idempotent if $I^{2}=I$ for every ideal I of R.

If $A, B \subseteq R$, then we define $(A: B)_{l}=\{r \in R / r B \subseteq A\},(A: B)_{r}=\{r \in R / B r \subseteq$ $A\},(A: B)=\{r \in R / r B \subseteq A$ and $B r \subseteq A\}$, As easily seen, 0 -prime ideal of R is 2 -prime ideal of R, but not conversely. Clearly 0 -prime $\Longrightarrow 1$-prime $\Longrightarrow 2$-prime, 0 -semiprime $\Longrightarrow 1$-semiprime $\Longrightarrow 2$-semiprime. Next we introduce the concepts of m_{1}-system, m_{2}-system, n_{1}-system and n_{2}-system. We have shown that if Q is an ideal of R and if M is an m_{2}-system of R such that $\bar{Q} \cap M=\emptyset$, then there exists a 2- prime ideal P of R such that $Q \subseteq P$ with $P \cap M=\emptyset$. Throughout this paper R stands for semiring.
Definition 1.1. A semiring R is an ordered triple $R=(R,+,$.$) such that (a)$ $<R,+>$ is a commutative monoid with identity denoted 0_{R} or simply 0 , (b) $<R, .>$ is a semigroup, (c) For every $r, s, t \in R, r(s+t)=r s+r t$ and $(s+t) r=s r+t r$, (d) For every $r \in R, r 0=0 r=0$.

Definition 1.2. Following Alarcon and Polkowska [2], we have the following definition for $\mathrm{B}(\mathrm{n}, \mathrm{i})$ semirings.

Let $n \geq 2 \in N$ and $0 \leq i<n$ and $m=n-i$. Let $B(n, i)$ be the following semirings : $B(n, i)=\{0,1,2, \ldots, n-1\}$ and the operations in $B(n, i)$ are:

$$
\begin{aligned}
x+_{B(n, i)} y & = \begin{cases}x+y & \text { if } x+y \leq n-1 \\
l & \text { if } x+y \geq n \\
\text { with } & l=(\mathrm{x}+\mathrm{y}) \bmod \mathrm{m} \text { and } i \leq l \leq n-1\end{cases} \\
x \cdot{ }_{B(n, i)} y & = \begin{cases}x y & \text { if } x y \leq n-1 \\
l & \text { if } x y \geq n \\
\text { with } & l=(\mathrm{xy}) \bmod \mathrm{m} \text { and } i \leq l \leq n-1\end{cases}
\end{aligned}
$$

Definition 1.3. If R is a semiring and P is an ideal of R, then P is $0-(2-)$ prime if A and B are ideals (k-ideals) of R such that $A B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. If R is a semiring and P is an ideal of R then P is 1 -prime if A is a k-ideal of R and B is an ideal of R such that $A B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$.

Remark 1.4. As in rings, if P is an ideal in a semiring R, then P is a 0 -prime ideal iff $a, b \in R$ such that $a R b \subseteq P$ then $a \in P$ or $b \in P$.

As in rings, if Q is an ideal in a semiring R, then Q is a 0 -semiprime ideal iff $a \in R$ such that $a R a \subseteq Q$ then $a \in Q$.
Lemma 1.5. If A and B are left ideals of R then $(A: B)_{l}$ is an ideal.
Lemma 1.6. If A is a left k-ideal of R and B is a left ideal then $(A: B)_{l}$ is a
k-ideal.
Lemma 1.7. If A and B are right ideals of R then $(A: B)_{r}$ is an ideal.
Lemma 1.8. If A is a right k-ideal of R and B is a right ideal then $(A: B)_{r}$ is a k-ideal.

Lemma 1.9. If P is a 0 -prime ideal of R then P is a 2-prime ideal (1-prime ideal) of R.
But the converse need not be true as the folloiwng example shows.
Example 1.10. Consider the semiring $B(4,3)=\{0,1,2,3\}$, where + and . are defined as follows.

+	0	1	2	3
0	0	1	2	3
1	1	2	3	3
2	2	3	3	3
3	3	3	3	3
\cdot	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	3	3
3	0	3	3	3

Since the ideals are $\{0\},\{0,3\},\{0,2,3\},\{0,1,2,3\}$ and k-ideals are $\{0\}$ and $\{0$, $1,2,3\}$ the ideal $\{0,3\}$ is 2 -prime but not 0 -prime.

Theorem 1.11. If P is a k-ideal of R then P is a 0 -prime ideal if and only if P is 2-prime ideal.
Proof. Let us assume that P is 2-prime and P is a k-ideal of R. Let us assume that A and B are ideals of R such that $A B \subseteq P$. If $A B \subseteq P$, then $A \subseteq(P: B)_{l}$. By Lemma 1.6, $(P: B)_{l}$ is a k-ideal of R. Therefore $<A>_{k} \subseteq(P: B)_{l}$. It follows that $<A>_{k} B \subseteq P$. Hence $B \subseteq\left(P:<A>_{k}\right)_{r}$. By Lemma 1.8, $\left(P:<A>_{k}\right)_{r}$ is a k-ideal of R. Therefore $_{k} \subseteq\left(P:<A>_{k}\right)_{r}$. It follows that $<A>_{k}_{k} \subseteq P$ Since P is 2-prime, we have $<A>_{k} \subseteq P$ or $_{k} \subseteq P$. Hence $A \subseteq P$ or $B \subseteq P$.

Definition 1.12. $M \subseteq R$ is called an m_{0}-system if for every $a, b \in M$ there exists $x \in R$ such that $a x b \in M . M \subseteq R$ is called an m_{1}-system if for every $a, b \in M$ there exists $a_{1} \in<a>_{k}$ and there exists $b_{1} \in$ such that $a_{1} b_{1} \in M . M \subseteq R$ is called an m_{2} system if for every $a, b \in M$ there exists $a_{1} \in<a>_{k}$ and there exists $b_{1} \in\langle b\rangle_{k}$ such that $a_{1} b_{1} \in M$.

Lemma 1.13. Every m_{0} system is an m_{2} (m_{1}-system). But the converse need not
be true as the following example shows.
Example 1.14. Consider the semiring $B(4,3)$ in Example 1.10. Clearly $M=$ $\{1,2\}$ is an m_{2} system, but not an m_{0}-system.

Lemma 1.15. If Pis an ideal of R, P is a 2-prime ideal (1-prime ideal, 0-prime ideal) of R iff $R \backslash P$ is an m_{2}-system (m_{1} system, m_{0}-system) of R.

Theorem 1.16. Let Q be an ideal of R, and let M be an m_{2}-system (m_{1}-system) of R such that $\bar{Q} \bigcap M=\emptyset$. Then there exists a 2-prime ideal (1-prime ideal) P of R such that $Q \subseteq P$ with $P \cap M=\emptyset$.
Proof. Let Q be an ideal of R and let M be an m_{2}-system of R such that $\bar{Q} \bigcap M=\emptyset$. Now we consider the set $\mathcal{M}=\{I /(\mathrm{i}) I$ is an ideal of R such that $Q \subseteq I$, (ii) $\bar{I} \bigcap M=\emptyset\}$. Clearly Q is in M. Let $Q_{1} \subseteq Q_{2} \subseteq Q_{3} \subseteq \ldots$ be any chain of ideals of \mathcal{M}. Let $A=\bigcup Q_{i}$. Clearly A is an ideal of R. We claim that $\bar{A} \bigcap M=\emptyset$. Suppose not, let $a \in \bar{A} \bigcap M$ implies $a \in \bar{A}$ and $a \in M$. Hence $a+x \in A$ for some $x \in A$. Since $a+x \in A=\bigcup Q_{i}$ implies $a+x \in Q_{i}$ for some i, since $x \in A=\cup Q_{i}$ implies $x \in Q_{k}$ for some k. Without loss of generality let us assume that $k<i$. Then $a+x, x \in Q_{i}$ implies $a \in \overline{Q_{i}}$. Therefore $a \in \overline{Q_{i}} \bigcap M$ which is a contradiction, since $\overline{Q_{i}} \bigcap M=\emptyset$. Thus $\bar{A} \bigcap M=\emptyset$. Then by Zorn's Lemma, there exists an ideal P of R that is maximal with respect to above properties. Let A be a k-ideal of R such that $A \nsubseteq P$. We calim that $(\bar{P}: A)_{r}=(\bar{P}: A)_{l}=P$. Since P is an ideal we have $A P \subseteq P \subseteq \bar{P}$ and so $P \subseteq(\bar{P}: A)_{r}$. Similarly $P \subseteq(\bar{P}: A)_{l}$. By Lemma 1.8, $(\bar{P}: A)_{r}$ is a k-ideal and by Lemma $1.6(\bar{P}: A)_{l}$ is a k-ideal. Thus $(\bar{P}: A)_{l}$ and $(\bar{P}: A)_{r}$ are k-ideals of R containing P. By maximality of P either $P=(\bar{P}: A)_{l}$ or $\overline{(\bar{P}: A)_{l}} \bigcap M=(\bar{P}: A)_{l} \bigcap M \neq \emptyset$ as $(\bar{P}: A)_{l}$ is a k-ideal. Similarly $P=(\bar{P}: A)_{r}$ or $\overline{(\bar{P}: A)_{r}} \bigcap M=(\bar{P}: A)_{r} \bigcap M \neq \emptyset$ as $(\bar{P}: A)_{r}$ is a k-ideal. Suppose that $(\bar{P}: A)_{r} \bigcap M \neq \emptyset$. Let $x \in(\bar{P}: A)_{r} \bigcap M$. We consider two separate cases.

Case 1: $A \bigcap M \neq \emptyset$. Let $a \in A \cap M$. Since $x \in(\bar{P}: A)_{r}$ we have $<x>_{k} \subseteq(\bar{P}$: $A)_{r}$, since $(\bar{P}: A)_{r}$ is a k-ideal. Hence $A<x>_{k} \subseteq \bar{P}$. Since $a, x \in M$ and M is an m_{2}-system of R there exists $a_{1} \in<a>_{k}$ and there exists $x_{1} \in<x>_{k}$ such that $a_{1} x_{1} \in M$. Since $A<x>_{k} \subseteq \bar{P}$ implies $a_{1} x_{1} \in \bar{P}$. Therefore $a_{1} x_{1} \in \bar{P} \bigcap M$, which is impossible since $\bar{P} \bigcap M=\emptyset$. Thus $P=(\bar{P}: A)_{r}$ in this case. Similarly if $y \in(\bar{P}: A)_{l} \bigcap M$ then it follows that $P=(\bar{P}: A)_{l}$. Thus if $A \bigcap M \neq \emptyset$ then $(\bar{P}: A)_{r}=(\bar{P}: A)_{l}=P$.
Case 2: $A \bigcap M=\emptyset$. Again we have $A<x>_{k} \subseteq \bar{P}$. This implies that $A \subseteq\left(\bar{P}:<x>_{k}\right)_{l}=P$ by case 1. This contradicts our assumption that $A \nsubseteq P$. Thus $(\bar{P}: A)_{l}=P$ in this case. Similarly $(\bar{P}: A)_{r}=P$. Finally we show that P is 2-prime. Let A and B are k-ideals of R such that $A B \subseteq P$ and $A \nsubseteq P$. Clearly $P \subseteq \bar{P}$. Hence $A B \subseteq \bar{P}$. It follows that $B \subseteq(\bar{P}: A)_{r}=P$. Therefore $B \subseteq P$.

Theorem 1.17. Let Q be an ideal of R and let M be an m_{0}-system of R such that $Q \bigcap M=\emptyset$. then there exists a 0-prime ideal P of R such that $Q \subseteq P$ with $P \bigcap M=\emptyset$.

The proof is similar to Theorem 1.16.
Definition 1.18. If R is a semiring and Q is an ideal of R then Q is $0-(2-)$ semiprime ideal if A is an ideal (k-ideal) of R such that $A^{2} \subseteq Q$ implies $A \subseteq Q$. If R is semiring and Q is an ideal of R then Q is 1-semirprime if A is an ideal of R such that $\bar{A} A \subseteq Q$ implies $A \subseteq Q$.

Definition 1.19. $N \subseteq R$ is called an n_{0}-system if for every $a \in N$ there exists $x \in R$ such that $a x a \in N . N \subseteq R$ is called an n_{1}-system if for every $a \in N$ there exists $a_{1} \in<a>_{k}$ and there exists $a_{2} \in<a>$ such that $a_{1} a_{2} \in N . N \subseteq R$ is called an n_{2}-system if for every $a \in N$ there exists $a_{1}, a_{2} \in<a>_{k}$ such that $a_{1} a_{2} \in N$.

Lemma 1.20. If S is a 0-semiprime ideal of R then S is a 2-semiprime ideal(1semiprime ideal) of R.

But the converse need not be true as the following an example shows.
Example 1.21. Consider the semiring in Example 1.10 Clearly $S=\{0,3\}$ is 2semiprime ideal but not 0 -semiprime ideal. Since if $A=\{0,2,3\}$, then A is an ideal and $A^{2}=\{0,3\} \subseteq S$ but $A \nsubseteq S$.

Theorem 1.22. If S is a k-ideal of R, then S is 0 -semiprime ideal iff S is 2semirpime ideal.
The proof is similar to Theorem 1.11.
Lemma 1.23. Let A be an n_{1}-system and $a \in A$. Then there is some m_{1}-system M with $a \in M \subseteq A$.
Proof. Let $a \in A$. Hence there exists $a_{1} \in<a>_{k}$ and $a_{2} \in<a>$ such that $a_{1} a_{2} \in A$. Since $a_{1} a_{2} \in A$ there exists $a_{1}^{\prime} \in<a_{1} a_{2}>_{k}$ and $a_{2}^{\prime} \in<, a_{1} a_{2},>$, , such that $a_{1}^{\prime} a_{2}^{\prime} \in A$. Continuing this process, we get a sequence $\left\{a, a_{1} a_{2}, a_{1}^{\prime} a_{2}^{\prime}, a_{1}^{\prime \prime} a_{2}^{\prime \prime}, \ldots\right\}$ such that for every positive integer $k, a_{1}^{k} a_{2}^{k} \in A$ with $<_{,}^{\prime} a>_{k} \supseteq<a_{1} a_{2}>_{k} \supseteq<$ $a_{1}^{\prime} a_{2}^{\prime}>_{k} \supseteq<a_{1}^{\prime \prime} a_{2}^{\prime \prime}>_{k} \supseteq \ldots$ and $<a>\supseteq<a_{1} a_{2}>\supseteq<a_{1}^{\prime} a_{2}^{\prime}>\supseteq \ldots$. Take $M=$ $\left\{a, a_{1} a_{2}, a_{1}^{\prime} a_{2}^{\prime}, a_{1}^{\prime \prime} a_{2}^{\prime \prime}, \ldots\right\}$. We show that M is a desired m_{1}-system. If $a_{1}^{l} a_{2}^{l}, a_{1}^{k} a_{2}^{k} \in M$ (w.l.o.g.,let $k \leq l$) then $<a_{1}^{k} a_{2}^{k}>_{k} \supseteq<a_{1}^{l} a_{2}^{l}>_{k}$ and $<a_{1}^{k} a_{2}^{k}>\supseteq<a_{1}^{l} a_{2}^{l}>$. Now there exists $a_{1}^{l+1} \in<a_{1}^{l} a_{2}^{l}>_{k}$ and there exists $a_{2}^{l+1} \in<a_{1}^{l} a_{2}^{l}>\subseteq<a_{1}^{k} a_{2}^{k}>$ such that $a_{1}^{l+1} a_{2}^{l+1} \in M$. This implies that M is a desired m_{1}-system.

Lemma 1.24. Let A be an n_{0}-system and $a \in A$. Then there is some m_{0}-system M with $a \in M \subseteq A$.

Lemma 1.25. Let A be an n_{2}-system and $a \in A$. Then there is some m_{2}-system M with $a \in M \subseteq A$.

Definition 1.26. If A is an ideal of R, then we define $\mathcal{B}_{0}(A)=\bigcap\{P$ is a 0 -prime ideal of R and $A \subseteq P\}$. Similarly we define $\mathcal{B}_{1}(A)$ and $\mathcal{B}_{2}(A)$.
Theorem 1.27. Let Q be an ideal of R. (i) \bar{Q} is a 2-semiprime ideal in R iff $\mathcal{B}_{2}(\bar{Q})$
$=\bar{Q}$. (ii) \bar{Q} is a 1-semiprime ideal in R iff $\mathcal{B}_{1}(\bar{Q})=\bar{Q}$. (iii) Q is a 0 -semiprime ideal in R iff $\mathcal{B}_{0}(Q)=Q$.
Proof. Suppose $\mathcal{B}_{2}(\bar{Q})=\bar{Q}$. Then \bar{Q} is the intersection of the 2-prime ideals of R which contain Q from which it follows easily that \bar{Q} is 2 -semiprime. Conversely, let \bar{Q} be 2 -semiprime. Clearly $\bar{Q} \subseteq \mathcal{B}_{2}(\bar{Q})$. Let $a \in R \backslash \bar{Q}$. Since \bar{Q} is 2 -semiprime, we have $R \backslash \bar{Q}$ is an n_{2}-systme of R. By Lemma 1.25 there exists an m_{2}-system M in R such that $a \in M \subseteq R \backslash \bar{Q}$. By Theorem 1.16 there exists a 2-prime ideal P of R such that $Q \subseteq P$ and $P \bigcap M=\emptyset$. Then $a \notin P$ and so $a \notin \mathcal{B}_{2}(\bar{Q})$. Thus $\bar{Q}=\mathcal{B}_{2}(\bar{Q})$ and the proof is complete.

The next is a direct consequence of the above theorem.
Corollary 1.28([1], Theorem 1). Let R be a semiring. Then the following assertions are equivalent: 1. R is fully idempotent. 2. Each proper ideal of R is the intersection of prime ideals which contain it.

References

[1] J. Ahsan, Fully idempotent semirings, Proc. japan Acad., 69, Ser.A(1993), 185-188.
[2] F.E.Alarcon and D. Polkowska, Fully Prime Semirings, Kyungpook Math. J., 40(2000), 239-245.
[3] P. Dheena and P. Nandakumar, On regular semirings, Indian Journal of Mathematics, 45(2) (2003), 135-140.
[4] N. H. McCoy, Theory of Rings, Macmillan, New York, 1964
[5] M.K.Sen and M.R.Adhikari, On maximal k-ideals of semirings, Proc.Amer. Math.Soc., 118(3), July 1993, 699-703.
[6] M.K.Sen and P.Mukhopadhyay, Von Neumannian Regularity in Semirings, Kyungpook Math.J., 35(1995), 249-258.

