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Signal Models

Classical Model:  Signal lies in a linear vector space 
(e.g. bandlimited functions)

Sparse Model: Signals of interest are often sparse 
or compressible

Signal Transform

Image

Bat Sonar 
Chirp

Wavelet

Gabor/
STFT

i.e., very few large coefficients, many close to zero.
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Sparse Signal Models
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Compressible (!p ball, p<1)

Sparse signals have 
few non-zero 
coefficients.

Compressible signals have few 
significant coefficients.  The 

coefficients decay as a power law. 
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Compressive Sensing in a Nutshell

If a signal is sparse,  do not waste 
effort sampling the empty space.

Instead, use fewer samples 
and allow ambiguity.

Use the sparsity model to reconstruct 
and uniquely resolve the ambiguity.



Compressive Measurements
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N = Signal dimensionality
K = Signal sparsity
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Measurement
(Projection)

Reconstruction

Ambiguity
null{Φ} + x

y = Φx

yi = 〈φi,x〉

N !"M # K

! has rank M!N

M = Number of measurements
(dimensionality of y)

! is usually random w/ M=O(K logN/K)



Non-linear Reconstruction

Reconstruction should be:

1. Consistent with measurements:

y=!x

2. Consistent with the model:

x is as sparse as possible
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Ambiguity
null{Φ} + x

min
x

‖x‖0 subject to y = Φx

Sparsity measure

min
x

‖x‖1 subject to y = Φx

Expensive!
⇔
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Beyond Linear Measurements:
1-bit Quantization



1-Bit Compressive Sensing

Q: Can we quantize measurements to 1-bit:

y = sign(Φx)

and recover the signal (within a positive scaling factor)?

yi = sign(〈φi,x〉)

1-bit measurements are inexpensive.

Focus on bits rather than measurements.

Exact recovery is not possible.



Reconstruction from 1-bit Measurements

Reconstruction should enforce model. 

Reconstruction should be consistent with measurements.

Sign information from 1-bit measurements:

yi = sign(Φx)i ⇔ yi · (Φx)i ≥ 0

x̂ = arg min
x

‖x‖1

subject to yi · (Φx)
i
≥ 0

x̂ = arg min
x

‖x‖1

subject to yi · (Φx)
i
≥ 0

and ‖x‖2 = 1

Reconstruction should enforce a non-trivial solution.



Information in 1-bit Measurements



Constraint Relaxation

f(x) =

{

x2 x ≤ 0
0 x > 0

We relax the inequality constraints:

where f(x) is a one sided quadratic:

x̂ = arg min
x

‖x‖1 +
λ

2

∑

i

f (yi · (Φx))

subject to ‖x‖2 = 1

λ ↑

x̂ = arg min
x

‖x‖1

subject to yi · (Φx)
i
≥ 0

and ‖x‖2 = 1



Fixed point equilibrium 

Y ≡ diag(y)

Cost(x) = g(x) +
λ

2
f(YΦx)

Cost′(x) = g′(x) +
λ

2
(YΦ)T f(YΦx)

(g′(x))
i
=







−1 xi < 0
[−1, 1] xi = 0

+1 xi > 0
and

(

f ′(x)

2

)

i

=

{

−xi xi ≤ 0
0 xi > 0

No change if gradients are projected on unit sphere.

Unconstrained minimization:

14

x̂ = arg min
x

‖x‖1 +
λ

2

∑

i

f (yi · (Φx))

subject to ‖x‖2 = 1



Minimization algorithm

Big Picture: Gradient descent until equilibrium.

Initialization parameters: 

1. Compute quadratic gradient:

2. Project onto sphere:

3. Quadratic gradient descent:

4. Shrink (!1 gradient descent):

5. Normalize:

6. Iterate until equilibrium.

h = (YΦ)T f ′(YΦx)

hp = h − 〈x̂,h〉

x̂ ← x̂ − τhp

x̂i ← sign(x̂i) max
{

|x̂i| −
τ

λ
, 0

}

x̂ ←
x̂

‖x̂‖

x̂, τ

15



Results
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Reconstruction Error (N=512)



1-bit Sampling of Images

If the signal is an image,  we have more information!
(i.e., a better signal model)

Images are sparse in wavelets and positive:
x = Wα

xi ≥ 0

and α is sparse

Incorporate better model in the reconstruction:
α̂ = arg min

α

‖α‖1

subject to yi × (ΦW)i ≥ 0

and (Wα)i ≥ 0

and ‖α‖2 = 1



Results

Original Image
4096 pixels
256 levels

Classical Compressive Sensing, 1 bit per pixel

2048 measurements
2 bits per measurement

1024 measurements
4 bits per measurement

512 measurements
8 bits per measurement

4096 measurements
1 bit per measurement

4096 measurements
1 bit per measurement

Reconstruction on unit sphere
1 bit per pixel



Results

Original Image
4096 pixels
256 levels

4096 measurements
1 bit per measurement

4096 bits (1 bit per pixel)

512 measurements
8 bits per measurement

Reconstruction on unit sphere

512 measurements
1 bit per measurement

512 bits (0.125 bits per pixel)

Reconstruction on unit sphereClassical Compressive Sensing



1-Bit Compressive Sensing

Q: Can we quantize measurements to 1-bit:

y = sign(Φx)

and recover the signal (within a positive scaling factor)?

yi = sign(〈φi,x〉)

YES:

• 1-bit measurements only provide sign information

• We treat measurements as constraints

• We do not try to recover amplitude information

• We enforce reconstruction on the unit sphere

• Better signal model provides dramatic improvements


