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Abstract

Receivers based on 1-bit quantization and oversampling with respect to the transmit signal bandwidth enable a
lower power consumption and a reduced circuit complexity compared to conventional amplitude quantization. In
this work, the achievable rate for systems using such analog-to-digital conversion with different modulation schemes
is studied. The achievable rate and the spectral efficiency with respect to a given power containment bandwidth are
considered. The proposed sequence-based communication approach outperforms the existing methods known from
the literature on noisy channels with 1-bit quantization and oversampling at the receiver. It is demonstrated that the
utilization of 1-bit quantization and oversampling can be superior in terms of the spectral efficiency in comparison to
conventional amplitude quantization using a flash converter with the same number of comparator operations per
time interval.
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1 Introduction
The achievable rate in case of Nyquist rate sampling is lim-

ited by the quantization resolution of the analog-to-digital

converter (ADC). In this regard, a flash converter consist-

ing ofNComp comparators limits the maximum achievable

rate to log2(NComp + 1) bits per Nyquist interval [1].

Differently, by time interleaving NComp comparator oper-

ations per Nyquist interval, 2NComp quantization regions

exist, which enhances the limit of the achievable rate to

NComp bits per Nyquist interval. In this regard, employ-

ing 1-bit quantization and oversampling at the receiver

is promising in terms of the achievable rate. Moreover,

a 1-bit ADC at the receiver is robust against amplitude

uncertainties such that the automatic gain control can be

simplified, and linearity requirements of the analog fron-

tend are relaxed. Last but not least, a 1-bit ADC requires

only simple circuitry and does not need much headroom

for amplitude processing, which makes it appropriate for

low supply voltages and with this low energy consump-

tion. All these motivate us to study the achievable rate of
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channels with 1-bit output quantization and oversampling

at the receiver.

A first study of the achievable rate with 1-bit quanti-

zation and oversampling at the receiver has been carried

out by Gilbert [2] showing a marginal benefit in terms

of the achievable rate by oversampling. Subsequently,

by using a Zakai bandlimited channel input processes,

Shamai [3] has shown that oversampling can significantly

increase the achievable rate. Both of these works consider

a noiseless channel. For noisy channels, in [4] a benefit of

oversampling has been proven in the low signal-to-noise

ratio (SNR) regime by studying the capacity per unit cost.

Moreover, in [5] the achievable rate at high SNR has been

studied by considering generalized mutual information,

which did not confirm the high rates promised in [3].

Besides these papers on strictly bandlimited channels,

also cases with less strict spectral constraints on the trans-

mit signal have reported benefits from 1-bit quantization

and oversampling. For example, in [6, 7], where the chan-

nel is treated as memoryless, it has been observed that

random processes such as additive noise and intersym-

bol interference can yield an increase of the achievable

rate due to dithering. The same strategy, namely treating

the channel as memoryless, has been applied for the uti-

lization of faster-than-Nyquist (FTN) signaling [8, 9] for

channels with 1-bit quantization and oversampling at the
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receiver [10]. An alternative strategy for communication

with 1-bit quantization and oversampling at the receiver

is to transmit sequences which generate a unique output

signal after 1-bit quantization. In this regard, a waveform

design supporting a unique detection of symbols with

16 quadrature amplitude modulation (16-QAM) has been

proposed in [11]. Without being exhaustive, the named

papers show some benefit of oversampling when using

1-bit channel output quantization. Nevertheless, none of

these approaches provide achievable rates comparable to

those which are presented in [3] for the noiseless channel.

In addition, 1-bit quantization—not necessarily with

oversampling—received increased attention in the con-

text of multiple-input multiple-output (MIMO) systems,

where the low SNR regime is discussed in [12, 13], and the

high SNR case is investigated in [14]. It is shown that the

power penalty for the 1-bit quantization in the low SNR

regime is less than 2 dB. For the high SNR regime, channel

state information can be exploited at the transmitter for a

channel inversion strategy for the construction of receive

signals appropriate for 1-bit quantization. Moreover, the

sequence design approach described in [11] for the single-

input single-output channel has been recently extended

for the massive multiple-input single-output scenario in

[15] and for the massive MIMO scenario in [16].

Furthermore, 1-bit quantization is considered in the

context of phase quantization [17] and a related con-

cept named overdemodulation [18], where the received

signal is down-converted with more than two carrier

phases, different to 90 degrees. The increased number of

carrier phases provides additional information in cases

where a coarse quantization at the receiver is consid-

ered. Another study is presented in [19], where mul-

tidimensional quantizer designs are investigated in the

context of channels with memory. The proposed quan-

tizers in [19] are optimized for channels with memory

whose quantization regions incorporate multiple receive

samples.

The channel with 1-bit quantization and oversampling

at the receiver is implicitly a channel with memory. In

this regard, we have to consider sequence detection based

receivers to approach the channel capacity [20]. As the

capacity of finite state channels can be approached by

Markov sequences [21], we consider different channel

input processes of this class. In this regard, we study

sequences based on:

• QAM and phase-shift keying (PSK) symbols at

Nyquist rate
• Faster-than-Nyquist signaling with quadrature

phase-shift keying (QPSK) and QAM symbols

i.e., we either design transmit sequences correspond-

ing to a conventional modulation or with an increased

signaling rate. Moreover, we study specific signal design

approaches, (1) reconstructible 4 amplitude-shift keying

(4-ASK) / 16-QAM sequences for conventional signal-

ing rate and (2) runlength-limited (RLL) sequences for

FTN signaling. We also propose a sequence optimization

strategy, based on the approach in [22], which maximizes

the achievable rate by optimizing the transition probabil-

ities of a Markov source model. The present work goes

clearly beyond the studies we have presented before on

this subject. The main extensions are the consideration

of PSK signaling, the consideration of the spectral effi-

ciency with different out-of-band power thresholds, the

extended description of the sequence optimization strat-

egy including the explanation of the lower bound on

the achievable rate and the overall performance compar-

ison for a large number of transmit signaling schemes

under the same conditions. Moreover, in the present

work, we describe the constraints on the waveform for

the reconstructable 16-QAM sequences and discuss the

zero-crossings in sequences composed of weighted cosine

pulses.

In [23], we treat the channel with 1-bit quantization and

oversampling at the receiver and root-raised-cosine (RRC)

transmit and receive filters with infinite memory. The

study serves as a proof of concept for strictly bandlimited

channels. The results in [23] in terms of the achievable

rate are comparable to [3]. However, the utilization of RRC

filters is impractical for many applications. In this regard,

consider that the use of RRC filters implies an exten-

sive memory of the channel when having 1-bit quantiza-

tion and oversampling at the receiver, which dramatically

increases the computational complexity of the sequence

demapping, e.g., by utilizing a trellis receiver. Differently

to [23], in the present work, we consider transmit pulses

with a shorter length in time domain such as the cosine

pulse and the Gaussian pulse. These waveforms provide

a good trade-off between spectral efficiency and channel

memory. We rely on the assumption that the residual out-

of-band radiation can be tolerated for specific applications

such as board-to-board communication at sub-Terahertz

carrier frequencies and intra-chipstack communications,

e.g., using through-silicon vias. Our results show that the

proposed methods outperform the existing methods in

terms of the spectral efficiency. Furthermore, our results

show that 1-bit quantization with oversampling at the

receiver can yield comparable and even superior spectral

efficiency than conventional methods based on ampli-

tude quantization when operating in the low quantization

regime with the same number of comparator operations

per time interval.

In the present work, we consider sequences with infi-

nite length and optimal receivers which rely on the

true or an auxiliary channel law. Alternative approaches

based on fixed-length sequences and receive strategies
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with a lower complexity are presented in our prior

work [24, 25].

The rest of the paper is organized as follows. Section 2

introduces the system model. In Section 3, we recall a

method to lower-bound the achievable rate for channels

with memory, which we will subsequently apply to eval-

uate the performance of the studied signaling schemes.

Afterwards, in Section 4, we present an approach to gen-

erate reconstructible 4-ASK/16-QAM sequences. More-

over, the application of RLL sequences, which are used

in combination with FTN signaling, is described in

Section 5. In Section 6, we propose an optimization strat-

egy for sequence design, which maximizes the given lower

bound on the achievable rate. We discuss the numerical

results in Section 7, and finally, a conclusion is given in

Section 8.

Notation: Bold symbols, e.g., yk , denote vectors, where

k indicates the k-th symbol, or more specifically, the sam-

ples which belong to the k-th input symbol time interval.

yk is a column vector with M entries, where M is the

oversampling factor w.r.t. a transmit symbol. Sequences

are indicated with xn =[ x1, . . . , xn]
T , and sequences of

vectors are denoted as yn =
[

yT1 , . . . , y
T
n

]T
. A segment

of a sequence is written as xk
k−L

=[ xk−L, . . . , xk]
T and

ykk−L =
[

yTk−L, . . . , y
T
k

]T
. Random quantities are denoted

by upright letters, e.g., yk is random vector. A simpli-

fied notation for probabilities of random quantities is

used with P
(

yn|xn
)

= P
(

yn = yn|xn = xn
)

. Exceptions

are explicitly declared.

2 Systemmodel
We consider the single carrier communication system

model shown in Fig. 1. The digital-to-analog converter

(DAC) in Fig. 1 is considered as ideal such that its out-

put is described by a sequence of weighted Dirac delta

pulses
∑∞

k=−∞ xkδ
(

t − k Ts
MTx

)

, with xk being the k-th

channel input symbol and MTx
Ts

describes the symbol rate

depending on the unit time interval Ts and the integer

parameterMTx. The complex baseband receive signal r(t)

corresponds to the complex transmit signal x(t), which is

given as a weighted sum of time shifted transmit pulses

h(t), disturbed by additive white Gaussian noise n(t). At

the receiver, r(t) is processed by the receive filter with the

impulse response g(t) such that the ADC input signal is

given by

z(t)=

∫ ∞

−∞

⎛

⎝

∞
∑

k=−∞

xk h

(

τ −k
Ts

MTx

)

+n(τ )

⎞

⎠ g(t − τ)dτ .

(1)

MTx larger than 1, e.g., MTx = 2 or 3, corresponds to

faster-than-Nyquist signaling following the principle in [8,

9]. In this regard, a compression of channel input symbols

in time is given, such that MTx channel input symbols are

emitted in the unit time interval Ts. The compression of

input symbols in time provides additional degrees of free-

dom which can be exploited for the waveform design. In

order to avoid extensively complex trellis-based receivers,

a transmit filter h(t) with short impulse response is favor-

able. In this context, different standard pulses (Gaussian

pulse, cosine pulse, and rect pulse) will be examined

in terms of the spectral efficiency for the considered

channel.

Instead of considering matched filtering,1 we consider

an integrate-and-dump receiver, whose integrator over the

time interval Ts serves as the receive filter

g(t) =

{√

1
Ts
, 0 ≤ t < Ts

0, otherwise,
(2)

whose short impulse response is favorable for a trellis-

based sequence detection. The system impulse response

is denoted as v(t) = (h ∗ g)(t).

Finally, the output signal of the low-pass filter z(t) is

sampled at rate MMTx
Ts

and quantized by the ADC. Here,M

denotes the oversampling factor with respect to the trans-

mit symbol rate. The channel with the transmit symbols

xk as input symbols and the output of the ADC yk is a

discrete-time channel. For describing the input and out-

put relations, we express the length of the overall impulse

response v(t) of the channel in terms of input symbol

durations. The length of the impulse response v(t) is by

definition L+1 symbol durations. The noise n(t) is just fil-

tered by the receive filter g(t) whose impulse response has

a length of ξ symbol durations. Considering the receive

filter in (2) with the length of Ts corresponds to ξ = MTx.

Perfect synchronization is assumed, such that one of the

M samples at the receiver includes the peak of the system

impulse response. With this, the sampling time instances

are case sensitive, such that the sampling vector zk =
[

zk,1, . . . , zk,M
]T

is described by

Fig. 1 System model, oversampling factorM, and faster-than-Nyquist coefficientMTx



Landau et al. EURASIP Journal onWireless Communications and Networking  (2018) 2018:83 Page 4 of 24

zk,m =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

z
(

kTs
MTx

+ mTs
MMTx

)

, (L + 1)M is even

z

(

kTs
MTx

+
(m− 1

2 )Ts

MMTx

)

, (L + 1)M is odd

and m ∈ {1, . . . ,M} ,

where M is the oversampling factor with respect to

a transmit symbol. Accordingly, the vector zk con-

tains the M samples corresponding to the transmit

symbol xk . The subsequent quantization is denoted by

yk,m = Q
(

zk,m
)

, where Q
(

zk,m
)

= sgn
(

zk,m
)

, such

that yk,m ∈
{

1 + j, 1 − j,−1 + j,−1 − j
}

. The quan-

tization operator applies element-wise with Q {zk} =
[

Q
(

zk,1
)

, . . . ,Q
(

zk,M
)]T

.

The channel input symbols xk are taken from discrete

modulation alphabets, specifically, a QPSK, QAM, or PSK

symbol alphabet X with the cardinality |X |. While for

QAM we use the standard constellation, for PSK constel-

lations, the input symbols are given by xk = e
j2π

mk+ 1
2

|X |

with mk ∈ {0, . . . , |X | − 1}.2 The channel including trans-

mit and receive filtering and quantization is a discrete

input discrete output channel with memory, for which

it is known that the channel capacity can be asymptoti-

cally achieved by a stationary Markov source [21]. Thus,

we consider a stationary Markov source model, such that

each channel input symbol xk depends on Lsrc previ-

ous symbols P
(

xk|x
k−1

)

= P
(

xk|x
k−1
k−Lsrc

)

= P
(

sk|sk−1

)

,

where for the latter, we use the state variable sk =

xkk−Lsrc+1 to describe the current state of the source. To

simplify the notation, we use the shorthand notation

Pi,j = P
(

sk = j|sk−1 = i
)

. We denote the stationary dis-

tribution of the source states by µi = P (sk = i) for i =

1, . . . , |X |Lsrc .

Due to transmit and receive filtering, the channel output

depends on previous channel inputs and outputs. Accord-

ingly, later in Section 3, we introduce an auxiliary channel

law, which accounts for for the dependency on N pre-

vious channel outputs yk−1
k−N

. Thus, we are interested in

the description of N + 1 subsequent channel output sig-

nals ykk−N . The parameter N can be understood as the

trace-back of the sequence, which corresponds to the

truncation length in the receiver processing, i.e., it lim-

its the dependency on prior channel outputs conditioned

on the channel inputs. In the following, we use a matrix-

vectornotationof the channel input/output relation given by

ykk−N = Q
{

zkk−N

}

= Q
{

V (N)U(N)xkk−N−L (3)

+ D(N)G(N)nkk−N−ξ

}

,

cf. the notation introduced at the end of Section 1. Due

to the memory of the channel introduced by transmit and

receive filtering, the subsequence of channel outputs ykk−N

depends on the transmit symbols xkk−N−L. An individual

channel output symbol is given by setting N = 0 in (3)

yielding

yk =Q {zk} = Q
{

V (0)U(0)xkk−L + D(0)G(0)nkk−ξ

}

.

(4)

The convolution with the system impulse response v(t) is

reflected by the multiplication with V (N) and the con-

volution with the receive filter impulse response (2) is

reflected by multiplication with G(N). The filter matrices

V (N) and G(N) with dimensions (M(N+1))×((L+N+2)

M−1) and (MD(N +1))× (MD(1+N +ξ)), respectively,

are structured as follows

V =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

[

vTr
]

0 · · · 0

0
[

vTr
]

0 · · · 0

. . .
. . .

. . .

0 · · · 0
[

vTr
]

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, G =
1

∥

∥gr
∥

∥

2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

[

gTr
]

0 · · · 0 0

0
[

gTr
]

0 · · · 0 0

. . .
. . .

. . .

0 · · · 0
[

gTr
]

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (5)

where the receive filter gr is normalized to unit energy3.

The system impulse response function is sampled in reverse

order with rate MMTx
Ts

to express the convolution.

With this, the vector in V is given by vr =
[

v
(

(L+1) Ts
MTx

)

,

v
(

(

L+M−1
M

)

Ts
MTx

)

, . . . , v
(

Ts
MMTx

)]T
when (L+1)M is even

and vr =
[

v
(

(

L+2M−1
2M

)

Ts
MTx

)

,v
(

(

L+ 2M−3
2M

)

Ts
MTx

)

, . . . ,

v
(

Ts
2MMTx

)]T
when (L + 1)M is odd. Moreover, the impulse

response of the receive filter sampled in reverse order

with the rate MMTxD
Ts

is denoted by gr =
[

g
(

ξ Ts
MTx

)

,

g
(

(

ξD − 1
M

)

Ts
MTxD

)

, . . . , g
(

Ts
MMTxD

)]T
. The D fold higher

sampling rate allows to model the aliasing effects

which possibly occur when considering receive filters

with a larger bandwidth as can be described with the

sampling rate of the receiver MMTx
Ts

.4 Accordingly, the

vector nkk−N−ξ
in (3) contains N + ξ + 1 vectors each

containing MD independent and identically distributed

(i.i.d.) complex Gaussian samples with zero mean and

variance σ 2
n modeling n(t). In order to merge the differ-

ent sampling rate domains, the input xkk−N−L is M-fold

upsampled by matrix multiplication with U(N) and the

filtered noise is D-fold decimated by the matrix multi-

plication with D(N). The matrix U(N) with dimensions

((L + N + 2)M − 1) × (L + N + 1) and the matrix

D(N) with dimensions (M(N + 1)) × (MD(N + 1)) have

elements given by

[U(N)]i,j =

{

1 for i = jM

0 otherwise,
(6)

[D(N)]i,j =

{

1 for j = (i − 1)D + 1

0 otherwise,
(7)

where i and j are positive integers accounting for the row

and the column number, respectively.
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3 Achievable rate
The considered channel in (3) has memory. A channel

output yk depends on previous input symbols and previ-

ous channel outputs yk−1, where the latter is induced by

the correlation of the noise samples. Considering block-

wise stationarity and ergodicity with respect to yk , the

simulation-based methods in [26–29] can be applied for

computing the achievable rate.

3.1 Lower-bounding by considering an auxiliary channel

law

According to [26, 29], the achievable rate for a channel

with memory can be computed with

lim
n→∞

1

n
I
(

xn; yn
)

= lim
n→∞

1

n

(

− logP
(

yn
)

+ logP
(

yn|xn
))

,

(8)

where the right hand side (RHS) can be numerically eval-

uated based on “very long” sequence realizations yn and

xn generated with respect to the distributions P (xn) and

P
(

yn|xn
)

. An auxiliary channel law W (·|·) is introduced

which approximates the actual channel law by limiting

the memory of the channel to N previous channel output

symbols yk−1
k−N

, i.e., P
(

yk|y
k−1, xk

)

≈ W
(

yk|y
k−1, xk

)

with

W
(

yk

∣

∣

∣
yk−1, xk

)

= P
(

yk

∣

∣

∣
yk−1
k−N , x

k
k−N−L

)

. (9)

According to the Auxiliary-Channel Lower Bound in

[29], by employing (9), we get

lim
n→∞

1

n
I
(

xn; yn
)

≥ lim
n→∞

1

n

(

−logW
(

yn
)

+logW
(

yn|xn
))

,

(10)

where the limit on the RHS can be numerically

approached based on very long sequences. The probabili-

ties W
(

yn
)

and W
(

yn|xn
)

are computed recursively with

the forward recursion of the Bahl-Cocke-Jelinek-Raviv

(BCJR) algorithm [30]. Taking into account the memory

of the auxiliary channel law L + N and the memory of the

source model Lsrc the system state sk , cf. Sec. 2 (including

channel and source) becomes sk = xkk−max(Lsrc,L+N)+1. In

this regard, the probability of the output sequence W (yn)

is computed with the recursion given by

W (yk) =
∑

sk

W
(

yk , sk

)

=
∑

sk

µk(sk), (11)

µk(sk) =
∑

sk−1

P
(

yk

∣

∣

∣
yk−1
k−N , sk , sk−1

)

P
(

sk
∣

∣sk−1

)

µk−1(sk−1)

=
∑

sk−1

P
(

yk

∣

∣

∣
yk−1
k−N , x

k
k−L−N

)

P
(

xkk−Lsrc+1

∣

∣

∣
xk−1
k−Lsrc

)

× µk−1(sk−1),

(12)

which makes use of (9) withµk(sk) as the branchmetric of

the BCJR algorithm, cf. the notation in [29]. For (12), we

have used the fact that yk , given xkk−L−N , is independent of

xk−L−N−1
k−Lsrc

if Lsrc > (L + N) applies. Analogously to (12),

the conditional probabilityW (yn|xn) is computed with the

recursion given by

W
(

yk|xn
)

= µ̃k = P
(

yk

∣

∣

∣
yk−1
k−N

, sk , sk−1

)

µ̃k−1

= P
(

yk

∣

∣

∣
yk−1
k−N , x

k
k−L−N

)

µ̃k−1. (13)

Using Bayes’ rule, we can write the conditional proba-

bility in (12) and (13) as

P
(

yk

∣

∣

∣
yk−1
k−N

, xkk−L−N

)

=
P
(

yk
k−N

∣

∣

∣
xk
k−L−N

)

P
(

yk−1
k−N

∣

∣

∣
xk
k−L−N

) =
P
(

yk
k−N

∣

∣

∣
xk
k−L−N

)

P
(

yk−1
k−N

∣

∣

∣
xk−1
k−L−N

) ,

(14)

where we have used that yk−1 is independent of xk .

Numerator and denominator in (14) can be computed

directly when considering a specific system model.

3.2 Transition probabilities

Because the computation of the transition probabilities

incorporates an integration over a multivariate circularly

symmetric Gaussian distribution, it is favorable in terms

of computational complexity to decompose them into

statistically independent real-valued components. With

Re {zk} = źk and Im {zk} = z̀k , a shorthand notation is

used, which is also applied for the xk and nk .

The real part of the received signal before the quan-

tization follows a multivariate Gaussian distribution

described by

p
(

ź
k
k−N |x́kk−L−N

)

=
1

√

(2π)M(N+1) |RN+1|

× exp

(

−
1

2

(

ź
k
k−N − µx

)T
R−1
N+1

(

ź
k
k−N −µx

)

)

,

(15)

with the mean vector µx = V(N)U(N)x́kk−L−N and the

covariancematrixRN+1=E

{

D(N)G(N)ńkk−N−ξ

(

ńkk−N−ξ

)T

G(N)TD(N)T
}

, where G(N) is real valued.

The transition probabilities for the quantized signal in

(3) are given by the integration over the corresponding

quantization regions5, i.e.,

P
(

ýkk−N

∣

∣

∣
x́kk−L−N

)

=

∫

z′k
k−N

∈Ýk
k−N

p
(

ź
k
k−N

∣

∣

∣
x́kk−L−N

)

dźkk−N ,

(16)

where Ý
k
k−N =

{

ź
k
k−N

∣

∣

∣
Q
{

ź
k
k−N

}

= ýkk−N

}

. QAM

sequences are described by two independent ASK
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sequences. In case of a PSK input alphabet, the real and

imaginary part of the received signal are independent

when they are conditioned on the input, which allows to

write the probability distribution as a product.

4 Reconstructible ASK sequences
In this section, we discuss the construction of ASK6

sequences which can be distinguished by a receiver using

1-bit quantization and oversampling. For illustration of

our approach, we consider a triangular waveform, i.e.,

v(t) = tri

(

t − Ts

Ts

)

=

⎧

⎨

⎩

t
Ts
, 0 ≤ t < Ts

2 − t
Ts
, Ts ≤ t < 2Ts

0, otherwise.

(17)

Note that the principle can be applied for all waveforms

which fulfill the constraints described in Appendix A,

e.g., when h(t) is a cosine pulse with length 2Ts. For the

illustrating example, we consider a 4-ASK input alphabet,

3-fold oversampling (M = 3), and a signaling rate with

MTx = 1.

4.1 The reconstruction issue of sequences with i.i.d.

symbols

The symbol transitions xk to xk+1 can be classified regard-

ing their properties on sequence reconstruction. The

states A to D in the state machine in Fig. 2 cover all pos-

sible signal evolutions, e.g., when considering sequences

of i.i.d. input symbols xk . The classification of the 16

symbol transitions into the four subclasses is a favorable

illustration, because transmit symbol sequences can be

modeled by arbitrarily combining the states A to D, while

symbol transitions within the subclasses have identical

properties for sequence reconstruction. The illustrations

within the boxes show possible evolutions of the received

A B

C D

Fig. 2 State machine for unconstrained 4-ASK symbol transitions

symbol over the time duration kTs ≤ t ≤ (k + 1)Ts.

The (M + 1) sampling instances within this time inter-

val are indicated by the vertical bars on the x-axis. The

sequence reconstruction properties are determined by the

corresponding channel output patterns given by the signs

at the sampling instances. In this regard, the four states

of the machine themselves represent classes of symbol

transitions which are associated with different properties

regarding sequence reconstruction:

A: xk and xk+1 can be directly reconstructed based on

the currentM + 1 ADC output samples in the time

interval kTs ≤ t ≤ (k + 1)Ts (“decision”)

B: xk+1 can be reconstructed based on the current

M + 1 ADC output samples in case xk is known at

the receiver, or xk can be reconstructed in case xk+1

is known (“forward”)

C: Possible ambiguity with transitions in state D

(“ambiguity1”)

D: Possible ambiguity with transitions in state C

(“ambiguity2”).

4.2 A state machine representation for reconstructible

ASK sequences

In Section 4.1, it has been shown that only a subset of all

possible transmit sequences can be distinguished based

on the current ADC output pattern, when the transmit

symbols xk are i.i.d.. The problem arises from the fact

that the transitions contained in state D cannot be dis-

tinguished from the transitions contained in state C or

vice versa. In the following, we describe how to avoid

this problem by a systematic sequence construction. For

this purpose, we model the transmit sequences by a state

machine. The state machine is designed such that each

possible realization of state transition sequences corre-

sponds to a different output pattern at the receiver, i.e.,

each realization of the machine corresponds to a recon-

structible sequence. We assume that the structure of the

state machine is shared with the receiver. A segment of a

reconstructible sequence is initiated and terminated with

state A. This is due to the fact that with state A, xk
and xk+1 are known, which is employed as starting point

for backtracking. Moreover, the introduction of an addi-

tional constraint allows to some extent the utilization of

both ambiguity states for sequence construction. First,

one of the ambiguity states, e.g., state C, can be termed

as a primary ambiguity state. The primary ambiguity can

be considered for sequence construction nearly uncon-

strained. The residual, state D, is the secondary ambiguity

which involves a constraint, e.g., such that after state D is

visited only state B or state A is allowed, which retains the

sequences segment unique for reconstruction. The corre-

sponding state machine is illustrated in Fig. 3, where the

B state subsequent to state D is termed B*. The adjacency
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A B C

D

Fig. 3 State machine for reconstructible 4-ASK sequences, with dependency on the whole prior sequence, P
(

xk|x
k−1

)

matrix, describing the directed connections of the states,

is given by

Aadj =

⎡

⎢

⎢

⎢

⎢

⎣

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 0 0 0 1

1 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

, (18)

where the first three rows account for the outgoing con-

nections for states A, B, and C, and the last two rows

account for the outgoing connections from the states D

and B*. The columns represent the incoming states in the

order A, B, C, D, and B*. According to [31], the maximum

entropy rate of sequences generated by this state machine

can be computed with

Hmax = lim
n→∞

1

n
log2

∑

i,j

[

An
adj

]

i,j
= log2 (λmax) (19)

= 1.7716 [bit per symbol], (20)

where λmax is the largest real-valued eigenvalue of Aadj,

and An
adj describes Aadj raised to the power of n. Further-

more, according to [31] the transition probabilities that

maximize the source entropy are computed with

Pi,j =
bj

bi
·

[

Aadj

]

i,j

λmax
, (21)

where bj and bi are the ith and jth entry of the right hand

eigenvector belonging to the eigenvalue λmax, respectively.

The proposed state machine models sequences with infi-

nite memory in terms of channel input symbols when

expressing them by the Markov source introduced in

Section 2 with a state corresponding to sk = xk
k−Lsrc+1.

To generate finite memory transmit sequences, a minor

modification of the presented state machine is required,

which is described in Appendix B. This modification

leads, depending on the source memory Lsrc, to a slight

reduction of the source entropy rate. However, accord-

ing to Table 1, we already closely approach the maximum

entropy of the state machine with infinite memory given

in (20) by considering a memory of Lsrc = 4.
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Table 1 Source entropy rates of reconstructible sequences

Sequence property Lsrc = 1 Lsrc = 2 Lsrc = 3 Lsrc = 4

limn→∞
1
nH(xn) [bit/symbol] 1.585 1.7237 1.7583 1.7678

5 Runlength-limited sequences
An alternative approach to model transmit sequences

which can be uniquely reconstructed at a receiver with a 1-

bit ADC is to use runlength-limited (RLL) sequences [32]

in combination with FTN signaling. RLL sequences are a

natural choice because they convey the information in the

distances of zero-crossings or runlengths. As the temporal

positions of a change of the signal should be controlled on

a more fine-grained time-grid than Ts, we have to choose

MTx > 1 in (1), which corresponds to FTN signaling.

RLL sequences can be obtained from the so-called

(d, k)-sequences, where d and k are the parameters which

constrain binary sequences. In a (d, k)-sequence a 1 is

followed by at least d and at most k 0s. The k prop-

erty is introduced for practical purpose such as clock

recovery which is neglected in this work, i.e., we assume

k = ∞. The corresponding state machine for a d-

constrained sequence is illustrated in Fig. 4. The (d, k)

sequence is subsequently transformed into a runlength-

limited sequence by non-return-to-zero inverted (NRZI)

encoding. An example is given as follows

(d) -seq.
[

. . . 1 0 0 1 0 1 0 1 . . .
]

rll-seq.
[

. . . 1 1 1 −1 −1 1 1 −1 . . .
]

,

where d = 1. According to [31], the maximum entropy

rate of such a sequence, which limits the corresponding

achievable rate, depends on the adjacency matrix Aadj

of the state machine and can be calculated by (19). The

adjacency matrix describing the state machine in Fig. 4 is

given by

Aadj,d=1 =

[

0 1

1 1

]

, Aadj,d=2 =

⎡

⎣

0 1 0

0 0 1

1 0 1

⎤

⎦ , (22)

where the rows correspond to the current states and the

columns correspond to the following state. Furthermore,

the transition probabilities for the source with maximum

entropy are computed with (21). With this, the maximum

achievable rates per symbol are given in Table 2.

Fig. 4 State machine describing d-constrained sequences

Table 2 Maximum entropy of d-constrained sources

Run-length constraint d = 1 d = 2 d = 3

Max entropy rate [bit/symbol] 0.6942 0.5515 0.4650

The d constraint implies redundancy within the chan-

nel input sequence. However, in combination with a

higher signaling rate, the RLL sequences can yield a

benefit in terms of spectral efficiency for the case of 1-

bit quantization at the receiver, which is different from

the unquantized FTN [33]. This is due to the fact that

the FTN-caused intersymbol interference cannot be cor-

rected by the trellis-based receivers because of the loss

of the additional amplitude information due to the 1-bit

ADC. In this regard, the sequences need to be well shaped,

such that the intersymbol interference does not induce

a flip of the sign of current symbols. In this regard, the

RLL sequences can tolerate some intersymbol interfer-

ence, e.g., of the considered channel, at a relatively low

cost in redundancy. In addition, the RLL sequences yield

a higher concentration of the signal power of the transmit

symbol sequence at lower frequencies. Depending on the

bandwidth criterion, this might further increase the spec-

tral efficiency. For complex transmit symbol sequences,

we consider independent RLL sequences for the real and

the imaginary part.

6 Maximization of a lower bound on the
achievable rate using an expectation-based
Blahut-Arimoto algorithm

In this section, we study a numerical input sequence opti-

mization approach with respect to the achievable rate. In

this regard, we discuss a strategy to optimize the transi-

tion probabilities of a given Markov source which models

the channel input sequences. The set of transmit symbols

X is given and fixed. The objective of the optimization is

an auxiliary channel based lower bound on the achievable

rate similar to the one introduced in Section 3. The pro-

posed sequence optimization approach [34] follows the

principle of the iterative Markov source optimization sug-

gested in [22]. Rewriting the information rate with the

chain rule yields

lim
n→∞

1

n
I
(

xn; yn
)

= lim
n→∞

(

1

n

n
∑

k=1

H
(

sk |sk−1

)

−
1

n

n
∑

k=1

H
(

sk |y
n, sk−1

)

)

(23)

≥ lim
n→∞

(

1

n

n
∑

k=1

H
(

sk |sk−1

)

−
1

n

n
∑

k=1

H
(

sk |y
n, sk−1

)

)

(24)

≥ lim
n→∞

⎛

⎝

1

n

n
∑

k=1

H
(

sk |sk−1

)

−
1

n

n
∑

k=1

HW
(

sk |y
n, sk−1

)

⎞

⎠ ,

(25)
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where we use sk = xkk−L−N+1 on the RHS and with

HW

(

sk|y
n, sk−1

)

=
∑

sk
k−1,y

n

P
(

skk−1, y
n
)

log2
1

W
(

sk|sk−1, yn
) .

The inequality in (24) holds as conditioning can only

decrease entropy and the inequality in (25) holds accord-

ing to the auxiliary channel lower bound, see Appendix C.

The second term on the RHS of (25) can be expressed as

lim
n→∞

1

n

n
∑

k=1

HW

(

sk|y
n, sk−1

)

=

lim
n→∞

(

1

n

n
∑

k=1

log2W
(

sk , s
k−1|yn

)

−
1

n

n
∑

k=1

log2W
(

sk−1|yn
)

)

,

(26)

where the RHS can be practically evaluated with very long

sequences. Considering a very long sequence, the argu-

ment of the limit on the RHS of (26) can be rewritten with

the symbol transition probabilities Pi,j and the stationary

distribution7 µi as

1

n

n
∑

k=1

log2 W
(

sk , s
k−1|yn

)

−
1

n

n
∑

k=1

log2 W
(

sk−1|yn
)

=
∑

i,j

µiPi,jlog2 W
(

sk = j, sk−1 = i|yn
)

−
∑

i

µilog2 W
(

sk−1 = i|yn
)

,

(27)

where (·) denotes the average over the specific state or

state transition based on the number of their occurrences

in the very long sequence realization. The second sum

on the RHS of (27) can be also written as
∑

i,j µiPi,j(·),

such that (27) can be rewritten as
∑

i,j µiPi,jT̂i,j with the

coefficients

T̂i,j=

∑

k
∣

∣

∣

∣

∣

sk−1= i

sk = j

log2W
(

sk , sk−1|y
n
)

∑

k
∣

∣

∣

∣

∣

sk−1 = i

sk = j

1

−

∑

k − 1
∣

∣

∣ sk−1= i
log2W

(

sk−1|y
n
)

∑

k − 1
∣

∣

∣ sk−1 = i
1

,

(28)

where the denominators account for the number of spe-

cific state transitions and states, respectively, occurring

in the sequence xn. The quantities W
(

sk , sk−1|y
n
)

and

W
(

sk−1|y
n
)

are computed with the BCJR algorithm [30].

Based on the T̂i,j notation, the lower bound on the achiev-

able rate in (25) is rewritten as

lim
n→∞

1

n
I
(

xn; yn
)

≥
∑

i,j

µiPi,j

(

log2

(

1

Pi,j

)

+ T̂i,j

)

.

(29)

In the following, it is described how to chose Pi,j for max-

imizing the RHS of (29). In this regard, the so-called noisy

adjacency matrix is given by
[

Ãadj

]

i,j
= 2T̂i,j . (30)

With (30), the transition probabilities which maximize

the achievable rate are given by

Pi,j =

⎧

⎨

⎩

bj
bi

[

Ãadj

]

i,j

λmax
, if the transition occurs in xn

0, else,
(31)

where λmax is the largest real eigenvalue of Ãadj and bi
and bj are entries of the corresponding eigenvector. The

method is applied iteratively as T̂i,j itself is a function

of Pi,j, where each iteration involves the generation of

xn and yn.

Note that this optimization procedure does not take into

account the power spectral density (PSD) of the result-

ing channel input signal. Moreover, the optimization has

an influence on the average transmit power and, thus, on

the SNR.

7 Numerical results
In this section, we numerically evaluate the achievable rate

based on the lower bound in (10). The simulation-based

computation of the RHS of (10), i.e., of the argument of

the limit, is carried out based on a sequence of length

n = 106 symbols. Whenever the proposed sequence opti-

mizaton strategy is applied, 19 iterations of the loop in the

algorithm described in Section 6 have been carried out.

The power containment bandwidth and the SNR are post-

computed as the transmit signal bandwidth depends on

the individual Markov source.

The correlation of the sequence of input symbols xn

depends on the used Markov source and determines the

power spectral density of the transmit signal. The coeffi-

cients of the discrete-time auto-correlation function of the

transmit symbol sequence xn are given by

ck = E
{

xlx
∗
l+k

}

=
∑

i

µixl (sl = i)
∑

j

x∗
l+k

(

sl+k = j
)

× P
(

sl+k = j|sl = i
)

,

(32)

with the stationary input state distribution µi. Hence,

the corresponding PSD is given by the Fourier transform

Sx(f ) =
MTx
Ts

∑∞
k=−∞ cke

j2π kTs
MTx

f
, where the infinite sum

can be approximated by considering a very large number

of coefficients. Together with the transfer function H(f )

of the transmit filter h(t), the PSD of the transmit sig-

nal is given by S(f ) = Sx(f )
∣

∣H(f )
∣

∣

2
. In the following, we

will refer to the two-sided power containment bandwidth

B90% (or B95%), which implies that a certain amount, e.g.,
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10% (or 5%), of the transmit power is emitted outside the

nominal bandwidth8.

The power containment bandwidth, e.g., B90%, is used

for computing the spectral efficiency as

spectral eff. =
Ibpcu · MTx

Ts · B90%
, (33)

where Ibpcu is the achievable rate w.r.t. one symbol sym-

bol duration Ts
MTx

. For numerical evaluation, we define the

oversampling factor w.r.t. the power containment band-

width, e.g., B90%, as

Moversampling =
M · MTx

Ts · B90%
. (34)

Moreover, also the SNR depends on the power contain-

ment bandwidth, e.g., B90%, and is defined as

SNR =
limT→∞

1
T

∫

T |x(t)|2 dt

N0 B90%
. (35)

Note that the transmit power depends on the Markov

source modeling the input sequence xn and the transmit

filter h(t). In the sequel, if not otherwise stated, we assume

the 90% power containment bandwidth (B90%).

For different simulations, we use auxiliary channels

with different memory N, cf. (9), as the computational

complexity scales with the number of states sk which

itself increases exponentially with N.9 For computation-

ally extensive cases, e.g., when the length of the channel

impulse response L+ 1 is large because of a high signaling

rate as is for MTx = 3 or when the input symbol alphabet

is large as is forMQAM = 256, it is essential to consider an

auxiliary channel law with a small N, e.g., N = 0, to retain

the computability. For the considered scenarios, we have

observed that the achievable rate practically approaches

its maximum when considering an auxiliary channel law

with N ≥ ξ = MTx. Considering N = ξ = MTx implies

that the condition in the channel law corresponds to the

exact channel outputs yk−1
k−N

, whose time instances match

to the noise samples nk−1
k−ξ

which influence the current out-

put yk , cf. (4). Moreover, from our experience, e.g., from

[20], the impact on the lower bound of the achievable rate,

e.g., when choosing N < ξ , is marginal at medium SNR

and vanishes with increasing SNR, which is reasonable

because the channel memory on the channel output arises

from the noise process. An overview on the considered

scenarios with 1-bit quantization at the receiver is given

in Table 3.

To evaluate the burden for the use of 1-bit quantiza-

tion and oversampling, we compare our approach with

the channel without output quantization and RRC filter-

ing with a roll-off factor of 0.3. In terms of FTN signaling,

we compare with a reference system without quantization

and with a roll-off factor equal to 1 and with various com-

pression factors τT , cf. the notation in [33]. Moreover,

Table 3 Overviewon considered scenarios with 1-bit quantization
at the receiver

Modulation alphabet Transmit pulse Sequence design M MTx N

QPSK Cosine i.u.d. 1 1 0

16-QAM Cosine i.u.d. 2,3 1 1

16-QAM Gaussian i.u.d. 2, 3 1 1

16-QAM Rect i.u.d. 2, 3 1 1

16-QAM Cosine Optimized 2,3 1 1

16-QAM Cosine Reconstructible 3 1 1

64-QAM Cosine Optimized 2,3 1 0

256-QAM Cosine Optimized 2,3 1 0

8-PSK Cosine i.u.d. 2,3 1 0

8-PSK Cosine Optimized 2,3 1 0

16-PSK Cosine i.u.d. 2,3 1 0

16-PSK Cosine Optimized 2,3 1 0

QPSK Cosine i.u.d. 1 2,3 1

QPSK Cosine Optimized 1 2 1

16-QAM Cosine Optimized 1 2 0

QPSK Cosine Optimized 1 3 0

QPSK Cosine RLL, d = 1 1 2 1

QPSK Cosine RLL, d = 2 1 3 1

QPSK Cosine RLL, d = 1 1 3 0

we compare our results on the spectral efficiency with

the AWGN channel capacity, normalized with the power

containment bandwidth, assuming a flat spectrum.

7.1 Transmit pulse

Before considering the sequence design, the impact of the

transmit pulse shape h(t) is examined in this section. The

complexity of the trellis-based receiver scales exponen-

tially with the length of the memory of the channel. In

this context, transmit pulses with short duration in time

domain are favorable and considered in this work explic-

itly. Standard transmit pulses are considered, such as the

cosine pulse described by

hcos(t) =

{√

1
3Ts

(

1 − cos
(

2π 1
2Ts

t
))

, 0 ≤ t < 2Ts

0, otherwise.

(36)

Another widely used transmit pulse is the Gaussian

pulse described by

pGauss(t) = e

−π2(t/Ts)
2

α2
h , (37)

where αh = 1
B3dBTs

√

log 2
2 and B3dBTs = 0.34. As the

transmit pulse h(t), the Gaussian pulse with unit energy

normalization is considered which is given by hGauss(t) =
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(∫∞
−∞ p2Gauss(t)dt

)− 1
2 pGauss(t). As a reference, also the

rectangular pulse shape given by

hrect(t) =

{√

1
Ts
, 0 ≤ t < Ts

0, otherwise,
(38)

is considered. The achievable rate for 16-QAM modula-

tion with independent and uniformly distributed (i.u.d.)

transmit symbols is illustrated in Fig. 5 10. Taking into

account the power spectral density shown in Fig. 6, the

spectral efficiency can be computed. The spectral effi-

ciency w.r.t. B90% and w.r.t. B95% are shown in Figs. 7

and 8, respectively. In terms of spectral efficiency the

Gaussian pulse and the cosine pulse show a compara-

ble performance. Because the cosine pulse has a shorter

duration in time domain, it is considered in the sequel.

7.2 QAM

Based on the lower bound on the achievable rate in (10),

Fig. 9 shows that the use of a higher order transmit

symbol alphabet, namely 16-QAM, is beneficial. While

with 1-bit quantization and without oversampling just

2 bits per channel use can be achieved (1 bit in the real

and 1 bit in the imaginary component), with an increas-

ing oversampling factor M the achievable rate increases.

Moreover, it is illustrated that a sophisticated sequence

design can further improve the achievable rate signifi-

cantly compared to i.u.d. input symbols. In this regard,

it is shown that the proposed method to model recon-

structible sequences (Section 4), which is described for

M = 3, achieves an achievable rate fairly close to the opti-

mized sequences (Section 6). With the approach based on

reconstructible sequences, the achievable rate approaches

the input entropy rate of 2 · 1.7678[bpcu], cf. Table 1, in

the high SNR regime, where the factor 2 is due to the

use of a complex modulation. The corresponding PSDs

are shown in Fig. 10. Note that the sequence optimiza-

tion depends on the SNR and that the illustrated spectra

consider high SNR (30 dB). Figure 11 shows that the

achievable rate can be further increased by utilizing even

larger modulation alphabets, e.g., 64-QAM or 256-QAM.

In this regard, note that the achievable rate for a 256-

QAM alphabet is larger than 2 log2(M + 1), for M = 2

and M = 3.11 This is remarkable, because it is higher

than the upper limit for the noiseless channel without

receive filter described in Appendix D. We explain this by

the circumstance that with the receive filter the system

impulse response is enlarged, such that new signal evolu-

tions are enabled, leading to more zero-crossing patterns.

This is in line with the data processing lemma because the

subsequent quantization is a suboptimal processing step.

Moreover, it is also remarkable, because 2 log2(M + 1) is

the maximum achievable rate for flash ADC based sam-

pling with M comparators. For 64-QAM and 256-QAM,

the achievable rate is lower-bounded by the utilization

of a simplifying auxiliary channel model with N = 0.

The sequence optimization only considers a peak power

constraint and no bandwidth constraint. Because of this

and the circumstance that our SNR definition involves the

bandwidth, we expect that at low SNR the actual capacity

is higher than that computed with our approach.

Fig. 5 The achievable rate for different transmit pulses
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Fig. 6 Power spectral density for different transmit pulses

The spectral efficiency as defined in (33) is shown in

Fig. 12. It can be observed that the spectral efficiency of

i.u.d. input sequences might be higher than with opti-

mized input sequences (Section 6) or with reconstructible

sequences designed according to the approach presented

in Section 4. This effect happens as we do not con-

sider any spectral shaping during the sequence design

approaches besides the choice of the pulse shape. In this

regard, the bandwidth depends on the sequence design

and the spectral efficiency can decrease. However, as the

oversampling factor inversely scales with the bandwidth,

the sequence design is still superior in comparison to

sequences of i.u.d. symbols, as we will point out in detail

in Section 7.5.

7.3 PSK

Figure 13 shows the lower bound on the achievable rate

in (10) for PSK symbol alphabets and 1-bit quantization

Fig. 7 The spectral efficiency w.r.t. B90% for different transmit pulses
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Fig. 8 The spectral efficiency w.r.t. B95% for different transmit pulses

and oversampling at the receiver. The PSK input alphabet

deserves special attention because the corresponding

transmit signal has a relatively low peak to average power

ratio, which is favorable in terms of linearity require-

ments of the transmit power amplifier. The case of 8-

PSK modulation is remarkable, because at high SNR, the

maximum input entropy of 3 bpcu is almost achievable

withM = 3.

Unlike as for QAM, due to the constant modulus trans-

mit symbols, the average transmit power is not strongly

influenced by the applied sequence optimization strategy.

However, as discussed for QAMmodulation, the nominal

bandwidth depends on the PSD of the transmit signal

and, thus, on the applied Markov source which describes

the transmit symbol sequences. Thus, the SNR in (35)

depends on the chosen sequence design, which explains

Fig. 9 Achievable rate with 1-bit quantization andM-fold oversampling, QAMmodulation, and various sequence designs, N = 1
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Fig. 10 Power spectral density for different sequence designs based on cosine transmit pulses

the slight horizontal shift of corresponding markers

in Fig. 13.

The corresponding spectral efficiency (B90%) is shown

in Fig. 14. In some exceptional cases i.u.d. channel input

symbols yield a higher spectral efficiency in comparison

to the optimized sequences design. As explained in

Section 7.2, in these cases sequence optimization

(Section 6) yields an increased bandwidth implying a

reduced effective oversampling factor Moversampling. The

relation between the effective oversampling factor and

the spectral efficiency is evaluated later in Section 7.5.

Comparing 16-PSK and 16-QAM in terms of the spectral

efficiency, it can be observed that 16-QAM is superior for

M = 2 andM = 3.

Fig. 11 Achievable rate for different oversampling rates and QAMmodulation orders; for comparison, upper bound on the achievable rate when
usingM comparators in a flash ADC with the same number of comparator operations per time interval (horizontal lines)
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Fig. 12 Spectral efficiency (B90%) versus SNR considering QAM transmit symbols

7.4 Faster-than-Nyquist signaling

In the following, we evaluate the achievable rate with

FTN signaling, i.e., MTx > 1, on the one hand for RLL

sequences as discussed in Section 5 and on the other hand

also for transmit sequences with i.u.d. symbols and for

optimized sequences (Section 6) with QPSK and 16-QAM

input alphabets. Here, we choose an equal signaling and

sampling rate, i.e.,M = 1.

Regarding the auxiliary channel law utilized for lower-

bounding the achievable rate, the maximum can be

practically approached by considering N = ξ = MTx.

However, we have considered memories of N = 1 or N =

0, not necessarily N = MTx, to limit the computational

complexity.

In Fig. 15, based on (10), lower bounds on the achiev-

able rate per channel use are shown, where a channel use

Fig. 13 Achievable rate versus SNR considering PSK transmit symbols
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Fig. 14 Spectral efficiency (B90%) versus SNR considering PSK transmit symbols

corresponds to a transmit symbol duration Ts
MTx

. In gen-

eral, it can be observed that the achievable rate decreases

with an increasing compression factorMTx. This behavior

is a consequence of the fact that the duration of one chan-

nel use is scaled down withMTx. In this regard, the benefit

of FTN is not reflected in Fig. 15. However, Fig. 15 allows a

comparison of the achievable rate with different sequence

design approaches for an equalMTx.

Figure 15 confirms that the maximum achievable rate

for RLL sequences, cf. Table 2, can be achieved. For a RLL

sequence with d = 1 andMTx = 3, we have observed that

the achievable rate does not approach the source entropy

rate when using the receive filter in (2) (not shown in

Fig. 15). For this special case, we choose a receive filter

with a shorter impulse response

g (t) =

{√

MTx
Ts

, 0 ≤ t < Ts
MTx

0, else,
(39)

which corresponds to a larger receive bandwidth. In the

figures, we refer to this exception by the notation wide-

band Rx. In this case, the achievable rate converges to the

source entropy rate. However, due to the larger bandwidth

of the receive filter, more noise is captured such that the

achievable rate saturates at higher SNR.

Moreover, it can be observed that the optimized

sequences (Section 6) yield a slightly larger achievable rate

than RLL sequences. Compared to the RLL sequences, the

sequence optimization strategy has more degrees of free-

dom for the construction of zero-crossings. Surprisingly,

MTx = 3 yields an even larger achievable rate in the high

SNR as compared to MTx = 2, which is counter intuitive.

On one hand, increasing the signaling rate implies a rela-

tive expansion of the system impulse response w.r.t. Ts
MTx

which in our case strongly attenuates fast signal transi-

tions. This is why at low SNR, MTx = 2 holds a benefit in

the achievable rate w.r.t. to a channel use in comparison to

MTx = 3. At high SNR, utilization of MTx = 3 can effec-

tively exploit more bandwidth for communication. This is

possible due to the fact that the considered transmit pulse

is not strictly bandlimited. Finally, the expansion of the

system impulse response provides more degrees of free-

dom which is in general favorable for the construction of

zero-crossings.

In addition, a 16-QAM alphabet has been considered

for sequence optimization (Section 6) withMTx = 2. Due

to the additional degrees of freedom, this approach shows

a much better performance in terms of achievable rate

compared to the other waveforms withMTx = 2.

We have compared our results with RRC-matched

filtering-based FTN signaling without quantization. The

compression in time is such that the transmit pulses

have a distance of τT · Tx, where Tx would be the con-

ventional transmit symbol duration without FTN. We

have computed a lower bound on the achievable rate

by using a truncation-based auxiliary channel law where

we have used for τT = 0.5, 0.4, and 0.3 a truncated
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Fig. 15 Achievable rate with FTN signaling,M = 1, a channel use corresponds to time interval Ts
MTx

system impulse response of length (L + 1) = 3, 5,

and 6, respectively.

The PSDs of the different sequence designs are shown in

Fig. 16. The consideration of runlength-limited sequences

implies that the signal energy is concentrated at lower

frequencies. To show the benefits of FTN signaling,

we evaluate its performance in terms of the spec-

tral efficiency (B90%) in Fig. 17. This presentation also

enables a fair comparison for different compression fac-

tors MTx, as the achievable rate is normalized with

respect to the 90% power containment bandwidth. In

Fig. 17, it can be observed that with increasing MTx and,

hence, also equally increasing sampling rate, the spec-

tral efficiency significantly increases for all approaches

for the transmit symbol sequence generation. Moreover,

Fig. 17 shows that for a given MTx, RLL sequences

show a superior performance in comparison to the other

approaches in terms of spectral efficiency. This holds

even in comparison to the case where the large 16-

QAM modulation alphabet is used. The additionally

required transmit power in comparison to the unquan-

tized FTN is less than 4 dB when operating at an SNR

below 15 dB.

Moreover, by the comparison of Figs. 17 and 12, we

make the important observation that the communication

based on the FTN signaling scheme requires a signifi-

cantly lower SNR. This can be explained by the fact that

the transmit filter h(t) in (36) is not strictly bandlim-

ited. In this regard, the spectral copies at a signaling rate

of 1
Ts

when MTx = 1 implicitly restrict the sequence

design which cannot be compensated by a large input

alphabet. The faster signaling rate offers more degrees of

freedom for the sequence design at higher frequencies.

However, in a scenario with strict bandlimitation [23], e.g.,

by considering Nyquist pulses, this effect vanishes.

7.5 Relation of the spectral efficiency and the

oversampling factor in the high SNR limit

Figure 18 illustrates the spectral efficiency (B90%) in the

high SNR limit as a function of the effective oversampling

factor (34). Alternatively, the 95% power containment

bandwidth is considered in Fig. 19. Note that spectral effi-

ciency and also the oversampling factor inversely scale

with the bandwidth. The results confirm the intuitive

presumption that in case of 1-bit channel output quan-

tization an increase of the sampling rate can yield an

increase in spectral efficiency. The illustration shows a fair

comparison between the presented approaches because

the considered effective oversampling factor takes into

account the bandwidth of the transmit signal. The results

are compared with the results known from the literature,

which have been adapted w.r.t. the power containment

bandwidth.We also compare our results with the result on

the achievable rate over a bandlimited noiseless channel

with 1-bit output quantization in [3], which we could not

normalize with the power containment bandwidth as the

considered Zakai processes do not have Fourier transfor-

mations. Unlike the existing literature on communication
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Fig. 16 Power spectral density for different FTN sequence designs

over noisy channels with 1-bit quantization at the receiver

[5–7] which indicates only moderate benefits from over-

sampling, the proposed communication schemes show a

clear advantage of oversampling in terms of the spectral

efficiency. The results are also comparable with the recent

results which are based on strictly bandlimited channels

with RRC filtering [23]. Moreover, the proposed methods

are compared to the maximum achievable rate for systems

with a standard flash ADC with Nyquist rate sampling at

the receiver with the same number of comparator opera-

tions per time interval. For a strictly bandlimited channel,

its achievable rate is given by 2 log2
(

Moversampling + 1
)

,

which we normalize w.r.t. the power containment band-

width based on a frequency flat spectrum. Some of the

Fig. 17 Spectral efficiency (B90%) versus SNR, with FTN signaling,M = 1
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Fig. 18 Spectral efficiency (B90%) versus effective oversampling factor (B90%) in the high SNR limit; for FTN (MTx > 1), it holds thatM = 1

Fig. 19 Spectral efficiency (B95%) versus effective oversampling factor (B95%) in the high SNR limit; for FTN (MTx > 1), it holds thatM = 1
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approaches given in the present work are comparable and

even superior in terms of achievable rate in comparison

to the flash ADC approach and the analytical results on

the noiseless channel given in [3]. Note that pipelined

ADCs require less comparators in comparison to the

flash ADCs. However, because of the additional inter-

stage processing in pipelined ADCs, a comparison is not

straightforward.

8 Conclusions
We have studied the achievable rate for an additive Gaus-

sian noise channel with 1-bit output quantization and

oversampling at the receiver, which is promising in terms

of a simplification of circuitry and a reduction of the

energy consumption at the receiver. As the transmit signal

is not strictly bandlimited, we have considered power con-

tainment bandwidth criteria with 90% and alternatively

95% power containment. The transmit sequences are con-

structed based on various QAM and PSK input symbol

alphabets and various signaling rates. Concrete sequence

designs, namely reconstructible 4-ASK (and with this

16-QAM) sequences and runlength-limited sequences for

faster-than-Nyquist signaling rates, are proposed. Fur-

thermore, a sequence optimization strategy is studied

which approaches the Markov capacity in the high SNR

regime. The performance is evaluated in terms of the

achievable rate and the spectral efficiency. We have

observed that the proposed approaches outperform the

existing methods on communication with 1-bit quanti-

zation and oversampling at the receiver. For a number

of methods, it has been shown that 1-bit quantization

and oversampling at the receiver yields a comparable or

even superior spectral efficiency than conventional ampli-

tude quantization using a flash converter with the same

number of comparator operations per time interval.

One key observation is that among the proposed meth-

ods, the spectral efficiency is maximized by FTN sig-

naling. This suggests that for the channel input signal,

the resolution in time is preferable in comparison to the

resolution in amplitude. However, it is known for the

unquantized case that FTN exploits the excess bandwidth

[33], such that it can be expected that the advantage of

FTN vanishes for more strict spectral constraints, cf. [23].

In summary, the results show that the use of receivers

with oversampled 1-bit quantization is promising. The

proposed ideas are a first step to a more complete under-

standing of the achievable rate and of an optimal trans-

mit sequence design for such channels. Aspects like the

robustness of these signaling schemes towards jitter and

timing synchronization errors remain for further study.

It is shown that the presented methods based on 1-bit

quantization and oversampling at the receiver require only

2 − 3 dB more transmit energy (at 5 − 10 dB SNR and

90% power containment bandwidth) in comparison to a

conventional communication system design with Nyquist

sampling and high resolution in amplitude.

Endnotes
1A matched filter would also depend on the sequence

design, i.e., on the statistical dependencies of the individ-

ual xk .
2Thus, the input symbols are not placed on the real and

imaginary axes which are the thresholds of the applied 1-

bit quantizer.
3The system impulse response v(t) is normalized

implicitly, because it is considered that h(t) has unit

energy normalization.
4The considered integrate-and-dump receiver is an

exceptional case, where the noise correlation can be per-

fectly described on the sampling grid (D = 1), although

there is no bandlimitation.
5For the computation, symmetries in the input

sequences can be exploited to reduce the number of

integrations.
6The case of QAM sequences follows by using the

concept for the real as well as for the imaginary axis.
7The stationary distribution µi can be computed based

on Pi,j.
8 In case of asymmetric spectra, it is considered that the

power of the out-of-band radiation is equally splitted into

the frequency range towards f = ∞ and the frequency

range towards f = −∞.
9This is true as long as L + N > Lsrc holds, cf. the state

definition in Sec. 3.1.
10Note that the SNR definition contains the bandwidth,

which then yields a relatively low SNR for scenarios with

hrect(t).
11We expect that for M > 3 a larger input alpha-

bet is required to obtain an achievable rate larger than

2 log2(M + 1).

Appendix A
The system impulse response for reconstructible

sequences

We consider a symmetric system impulse response rang-

ing over 3Ts. With the parameters M = 3 and MTx = 1,

the discrete system impulse response can be described by

nine coefficients, by v = [v4, . . . , v0, . . . , v4]
T . The out-

put patterns displayed in the different states in Fig. 2

are functions of two consecutive channel input sym-

bols xk and xk+1 taken from a 4-ASK constellation, e.g.,

xk ∈ {−3,−1, 1, 3}. Because of the length of the system

inpulse response, the neighboring channel input symbols
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xk−1 and xk+2 are also considered. For the interference

from xk−1 and xk+2, we assume a maximum amplitude

and distinguish between positive and negative sign. For

each transition type A. . .D, inequalities can be formu-

lated which describe the signal shape according to the

desired pattern at the output of the ADC (assuming no

noise). Exploiting the symmetry of the impulse response

v, its coefficients have to fulfill the following inequali-

ties to be able to apply the state representation in Fig. 3:

BT
constr. i [v0, . . . , v4]

T > 0, for i = {A, . . . , D}, where 0

denotes a column vector containing 8 zeros and where the

Bconstr. i express the state transition specific constraints

and are given by

Bconstr. A =

⎡

⎢

⎢

⎢

⎢

⎣

3 3 0 0 0 0 1 1

0 0 3 3 −1 −1 0 0

0 0 −1 −1 3 3 0 0

−4 2 0 0 0 0 −6 0

0 0 3 −3 3 −3 0 0

⎤

⎥

⎥

⎥

⎥

⎦

, (40)

Bconstr. B =

⎡

⎢

⎢

⎢

⎢

⎣

1 1 0 0 3 3 0 0

0 0 1 1 0 0 3 3

0 0 −1 −1 0 0 −3 −3

−4 2 0 0 −6 0 0 0

0 0 −3 3 0 0 −3 3

⎤

⎥

⎥

⎥

⎥

⎦

,

Bconstr. C =

⎡

⎢

⎢

⎢

⎢

⎣

1 1 0 0 3 3 0 0

0 0 1 1 0 0 3 3

0 0 1 1 0 0 3 3

4 −2 0 0 6 0 0 0

0 0 3 −3 0 0 3 −3

⎤

⎥

⎥

⎥

⎥

⎦

,

Bconstr. D =

⎡

⎢

⎢

⎢

⎢

⎣

3 3 0 0 0 0 1 1

0 0 3 3 1 1 0 0

0 0 1 1 3 3 0 0

4 −2 0 0 0 0 6 0

0 0 3 −3 3 −3 0 0

⎤

⎥

⎥

⎥

⎥

⎦

,

which describe the combinations of the input sym-

bols. Note that some of the constraints are redun-

dant. Moreover, symmetries have been exploited. Besides

the illustrated triangular waveform with [v0, . . . , v4] =

[1, 0.666, 0.333, 0, 0], the waveformwith the transmit pulse

given in (36) jointly with the assumptions on the receive

filter in Section 2 corresponding to the coefficients

[v0, . . . , v4] = [0.9449, 0.759, 0.387, 0.1037, 0.0042] fulfills

these constraints.

Appendix B
Reconstructable 4-ASK sequences with finite memory

The system model introduced in Section 2 relies on chan-

nel input sequences defined by a Markov process where

the states correspond to sk = xkk−Lscr+1, i.e., the source

has finite memory. Differently, in the state machine in

Fig. 3, a channel input symbol depends on an infinite

number of previous channel input symbols. Thus, we

will modify the state machine such that an output sym-

bol just depends on a finite number of Lscr past output

symbols. For this purpose, we exclude the state transi-

tion from B* to B* in the state machine in Fig. 3. The

loss in terms of the source entropy rate can be compen-

sated by introducing further states like B**, B***, etc. This

implies that the process returns to state A after passing

state D with a maximum number of transitions which can

be easily translated into the state representation used for

Markov sources in this work. The dashed boxes in Fig. 20

show the state machines for reconstructible sequences for

Lscr = 1, . . . , 4. The corresponding adjacency matrices are

given by

Aadj,1 =

⎡

⎣

1 1 1

1 1 1

1 1 1

⎤

⎦ , Aadj,2 =

⎡

⎢

⎢

⎣

1 1 1 1

1 1 1 1

1 1 1 1

1 0 0 0

⎤

⎥

⎥

⎦

, (41)

Aadj,Lscr =

⎡

⎣

13×4 03×(Lscr−2)

[

1Lscr−1 0(Lscr−1)×3

]

[

ILscr−2

0TLscr−2

]

⎤

⎦ for Lscr>2.

(42)

Appendix C
A lower bound based on the auxiliary channel law (reverse)

The auxiliary channel lower bound in [29] used in (10) is

introduced as

I
(

x; y
)

≥
∑

x,y

P(x, y) log2

(

W (y|x)

W (y)

)

, (43)

where W (·) is the auxiliary channel law (9). We will

show with similar steps as used in [29] that its re-

verse formulation also applies, also for a conditional

mutual information. The RHS of (25) can be writ-

ten as limn→∞
1
n

∑n
k=1 IW (sk ; y

n|sk−1), and its terms are

given by

IW (sk ; y
n|sk−1)=

∑

sk
k−1,y

n

P
(

skk−1, y
n
)

log2

(

W
(

sk|y
n, sk−1

)

P
(

sk|sk−1

)

)

.

(44)

To show that IW
(

sk ; y
n|sk−1

)

lower-bounds I
(

sk ; y
n|sk−1

)

,

we consider the difference given by
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I(sk ; y
n|sk−1) − IW (sk ; y

n|sk−1)

=
∑

sk
k−1,y

n

P
(

skk−1, y
n
)

[

log2

(

P
(

sk , y
n|sk−1

)

P
(

sk |sk−1

)

P
(

yn|sk−1

)

)

− log2

(

W (sk |y
n, sk−1)

P
(

sk |sk−1

)

)]

=
∑

sk
k−1,y

n

P
(

skk−1, y
n
)

log2

(

P
(

sk , y
n|sk−1

)

W (sk |y
n, sk−1)P

(

yn|sk−1

)

)

=
∑

sk

P
(

sk−1

)

D
(

P
(

sk , y
n|sk−1

)

‖W
(

sk |y
n, sk−1

)

× P
(

yn|sk−1

))

≥ 0,

(45)

whereD(·‖·) is the Kullback-Leibler divergence [35] which

is always non-negative [36, Th. 8.6.1].

Appendix D
Upper-bounding the capacity of the noiseless channel

without receive filter

We consider a special case with the transmit pulse h(t) =

hcos(t), a receive filter with g(t) = δ(t) and n(t) = 0,

such that the input signal of the ADC is x(t), which is

a weighted sum of time shifted transmit pulses h(t). We

consider a conventional signaling rate withMTx = 1 such

that the transmit signal is denoted by

x(t) =

n
∑

k=1

xk · h (t − k · Ts) . (46)

With this, the signal in a time interval of two consecutive

symbols xk−1 and xk is given by

Fig. 20 State machine to generate reconstructible 4-ASK sequences with finite memory
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x (kTs + τ) =

√

1

3Ts

(

xk−1 + xk + (xk−1 − xk) cos

(

2π
τ

2Ts

))

,

0 ≤ τ < Ts,

which describes a raised or lowered cosine function in the

interval with the running time variable τ . Its frequency is

such that x(t) has at max one zero-crossing per time inter-

val kTs ≤ τ < (k+ 1)Ts. Now, we consider that this signal

is quantized with 1-bit and sampling rate M
Ts
. The fact that

there is at most one zero-crossing in the time interval Ts

implies that the maximum output entropy and with this

also the capacity are upper-bounded by 2 log2(M + 1),

where the factor 2 accounts for the complex equivalent.
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