
1-Bit Stochastic Gradient Descent
and its Application to Data-Parallel Distributed Training of Speech DNNs

Frank Seide1, Hao Fu1,2, Jasha Droppo3, Gang Li1, and Dong Yu3

1 Microsoft Research Asia, 5 Danling Street, Haidian District, Beijing 100080, P.R.C.
2 Institute of Microelectronics, Tsinghua University, 10084 Beijing, P.R.C
3 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
{fseide,jdroppo,ganl,dongyu}@microsoft.com, fuhao9202@hotmail.com

Abstract
We show empirically that in SGD training of deep neural net-
works, one can, at no or nearly no loss of accuracy, quantize the
gradients aggressively—to but one bit per value—if the quan-
tization error is carried forward across minibatches (error feed-
back). This size reduction makes it feasible to parallelize SGD
through data-parallelism with fast processors like recent GPUs.

We implement data-parallel deterministically distributed
SGD by combining this finding with AdaGrad, automatic
minibatch-size selection, double buffering, and model paral-
lelism. Unexpectedly, quantization benefits AdaGrad, giving a
small accuracy gain.

For a typical Switchboard DNN with 46M parameters, we
reach computation speeds of 27k frames per second (kfps) when
using 2880 samples per minibatch, and 51kfps with 16k, on a
server with 8 K20X GPUs. This corresponds to speed-ups over
a single GPU of 3.6 and 6.3, respectively. 7 training passes over
309h of data complete in under 7h. A 160M-parameter model
training processes 3300h of data in under 16h on 20 dual-GPU
servers—a 10 times speed-up—albeit at a small accuracy loss.

1. Introduction and Related Work
At present, the best context-dependent deep-neural-network
HMMs, or CD-DNN-HMMs [1, 2], are trained primarily with
error back-propagation, or BP. BP is a form of stochastic gradi-
ent descent, or SGD. For production-size models and corpora,
this is time consuming and can take many days or weeks, even
on the currently fastest hardware, graphics processing units
(GPUs). While attempts at parallelizing SGD training across
multiple compute nodes were successful for sparsely connected
networks like those used for image processing, success has been
moderate for speech DNNs which are fully connected.

For example, Google’s DistBelief system successfully uti-
lizes 16,000 cores for the ImageNet task [3] through asyn-
chronous SGD, an implementation of Hogwild [4]; while for
a speech model with 42M parameters, a 1,600-core DistBe-
lief [5] is only marginally faster than a single recent GPU; and
[6] achieved a 28-fold speed-up with 64 GPUs for their 1.9B-
parameter vision network, while [7] reports a 3.2-times speed-
up using 4 GPUs for speech.

This paper focuses on parallelization in a data-parallel fash-
ion. In data parallelism, each minibatch is split over multiple
compute nodes. Each node computes a sub-gradient on its sub-
minibatch. These sub-gradients, of the same dimension as the
full model, must be summed over all nodes and redistributed.

Applied directly to typical training configurations, this pro-
cess is infeasible due to the high bandwidth that it takes to ex-
change sub-minibatch gradients across nodes. Avenues for im-

proving efficiency for data parallelism are to increase the mini-
batch size and to reduce how much data gets exchanged [8].

We focus on the latter and propose to reduce bandwidth by
aggressively quantizing the sub-gradients—to but one bit per
value. We show that this does not or almost not reduce word
accuracies—but only if the quantization error is carried for-
ward across minibatches, i.e. the error in quantizing the gradi-
ent in one minibatch is added (fed back) to the gradient of the
next minibatch. This is a common technique in other areas, such
as sigma-delta modulation for DACs [9], or image rasterization.
It is a key difference to the well-known R-prop method [27].

Some prior work on speeding up model training considered
changes of model structure and training approach, e.g. [10, 11]
where the network was factored into a hierarchy; low-rank
approximations [12, 13]; second-order methods (“Hessian-
Free”) [14, 15]; model averaging [16]; or ADMM which clev-
erly tweaks the objective function for better parallelizability
[17, 18]. The last three typically require more data passes, but
make up for it through good parallelization properties.

In the paper at hand, we aim at unchanged convergence be-
havior. Also, unlike Hogwild/ASGD [4, 5], we desire determin-
istic behavior. In this category, an alternative to data parallelism
is model parallelism, where models are distributed over nodes
[5, 8]. One can also parallelize over layers [19]: Each GPU
processes one or more consecutive layers, where data flows up
and down through the layers between GPUs, and, as a conse-
quence, gradients only become available at a delay of one or
more minibatches (depending on the layer). This achieved a
3.3-times speed-up on 4 GPUs, but it does not scale beyond the
number of layers, and load balancing is problematic. That work
showed, however, that delayed updates can work, and motivated
the double-buffering technique we apply in this paper.

We will next describe data-parallel DNN training. Then,
Section 3 will introduce the 1-bit quantization approach, and
Section 4 the data-parallel SGD system we implemented based
on this. Finally, Section 5 will give experimental results
for quantization, interaction with AdaGrad, impact of double
buffering, and combination with model parallelism.

2. Data-Parallel Deterministically
Distributed SGD Training

A deep neural network (DNN) is a conventional multi-layer per-
ceptron (MLP [20]) with many layers, where training is com-
monly initialized by a pretraining algorithm [21, 22, 23]. A
CD-DNN-HMM models the posterior probability P (s|o) of a
tied triphone state, or senone s [24, 1], given an observation
vector o. For details, please see, for example, [23].

The best DNNs to this date are often trained using the com-
mon error back-propagation (BP) technique [25], which is a

Copyright © 2014 ISCA 14-18 September 2014, Singapore

INTERSPEECH 2014

1058



Figure 1: Illustration of optimal number of compute nodes K̂.
Parallelizing over K nodes reduces variable cost K-fold. K is
optimal when computation and communication cost are equal.

form of stochastic gradient descent. Even when other tech-
niques are used, such as the Hessian-free method [26, 15, 12],
BP still constitutes a significant portion of the training time.

In its typical minibatch form, BP can be written as:

λ(t+N) = λ(t) + ε(t) ·G(t) (1)

G(t) =

t+N−1∑
τ=t

∂Fλ(o(τ))

∂λ

∣∣∣∣
λ=λ(t)

(2)

where λ(t) denotes the model at “current” sample index twhich
increases in steps of the minibatch sizeN (e.g. 1024), andFλ is
the partial gradient of the objective function for sample vector
o(τ). The learning rate ε(t) is variable as training progresses.

2.1. Data-Parallel Distributed SGD

Eq. (2) can be parallelized by splitting the sum over com-
pute nodes: Each node processes part of each minibatch—data
parallelism—and the sub-minibatch gradients are then summed
up over all nodes. Generally, an optimal number of nodes1, K̂,
is one where computation and data exchange happen concur-
rently with perfect overlap; that is, simultaneously saturating
the communcation channel and the processing resources:2

Tcalc(K̂) = Tcomm(K̂). (3)

Tcalc and Tcomm are the time per minibatch for concurrent per-
node calculation and inter-node communication, respectively
[8]. If we break Tcalc further into variable (parallelizable) and
fixed computation cost, then the optimal number of nodes K̂ for
data parallelism is given, as illustrated by Fig. 1, as:

K̂ =
N/2 · T frm

calc + C · T post
calc

1
Z
· T float

comm − T upd
calc

(4)

with the variable (parallelizable) costs T frm
calc (cost to process

one frame of data3, dominated by three large matrix products
per layer) and T post

calc (component-wise gradient post-processing
steps of which there are C, e.g. 3 for momentum + AdaGrad
accumulation and application). T float

comm is the communication
cost for exchanging sub-gradients as plain “float” values4, and
Z a compression factor due to using less bits per gradient value.
In particular, Z = 32 for quantization to 1 bit. Lastly, T upd

calc is

1A node can be defined as a GPU, a CPU core, or a multi-core server.
2If the communication channel is not saturated, then the system

could be improved by parallelizing more. If the processing resources
are not saturated, it could be improved by parallelizing (communicat-
ing) less or by processing more data.

3Here we ignore the fact that both computation and communication
become less efficient if we reduce the data size, due to caching and/or
overhead. The results section will show actual time measurements.

4Note that communication cost is independent ofK, cf. Section 3.1.

the cost of adding the gradient to the model, a component-wise
operation that is not parallelized—it is fixed w.r.t. K.

Roughly, for a model with M parameters, T frm
calc ∼ M

FLOPS
,

T post
calc and T upd

calc ∼
M
r

with RAM bandwidth r, and T float
comm ∼

M
b

with peer-to-peer bandwidth b. Importantly, unlike T frm
calc,

T post
calc and T upd

calc are memory-bound, in particular on GPUs.

2.2. Double Buffering with Half Batches

The ominous /2 in Eq. (4) stems from double buffering. To
achieve concurrent computation, we break each minibatch in
half and exchange sub-gradients of one half-minibatch while
computing the sub-gradients of the next half-minibatch, using a
model that is outdated byN/2 samples (delayed update [19, 8]).
We hope by keeping the overall delay in the order of a minibatch
size, convergence will not change fundamentally [8].

2.3. Potential Faster-Than-Fixed-Cost Communication

Eq. (4) breaks down when communication cost falls below the
fixed cost. Then we can no longer saturate the communica-
tion channel; the speed-up is limited by the fixed cost.5 This
happened to our 1-bit SGD with earlier, less optimized code.
In this case, double buffering with half-minibatches no longer
makes sense, as it masks communication cost at the expense of
an additional fixed cost, which is now higher.

2.4. Relation to Hogwild/ASGD

All of the above also applies to the Hogwild method, also
known as “asynchronous SGD” [4, 5, 7]. Hogwild differs in
that it uses an unsynchronized gradient exchange (via a parame-
ter server). It is another form of delayed update where the delay
varies non-deterministically across model parameters. This is
beneficial for inhomogeneous server farms or shared networks,
but it does not improve parallelizability in a fundamental way.

3. 1-Bit SGD with Error Feedback
The core of this paper is our approach to reducing the band-
width requirement for the data exchanges in data parallelism:
We (1) design the system to exchange gradients (as opposed to
model parameters) and (2) quantize those gradients during data
exchange—aggressively so.

The inevitable quantization errors should, however, not just
be left to the SGD process to be caught and corrected; we find
that it does not work well and can lead to divergence.

Instead, inspired by Sigma-Delta modulation [9], when
quantizing a gradient parameter Gij`(t), we keep the quantiza-
tion error ∆ij`(t) and add it into the respective next minibatch
gradient before quantization:

Gquant
ij` (t) = Q(Gij`(t) + ∆ij`(t−N))

∆ij`(t) = Gij`(t)−Q−1(Gquant
ij` (t))

where Q(·) is the quantization function and the Gquant
ij` are

packed integers representing the quantizated values. This error-
feedback ensures that all gradients are eventually added up into
the model with (in the limit) full accuracy; just split across mul-
tiple minibatches—another form of delayed update. We find
that as long as error feedback is used, we can quantize all the
way to 1 bit at no or nearly no loss of accuracy.

5Noone escapes Amdahl’s law.

1059



For our 1-bit implementation, we find that using a con-
stant quantization threshold of 0 is a good (and cheap) choice,
whereas the reconstruction values used by the unquantizer
Q−1(·) are tied within each weight-matrix column (j, `). The
two values per column are recomputed as to minimize the
square quantization error and transmitted in each data exchange.

3.1. Aggregating the Gradients
The algorithm we use for aggregating the sub-gradients over
compute nodes [8] is of O(1) w.r.t. the number of nodes: Each
compute node is responsible for aggregating a 1/K-th subset of
model parameters, which it will receive in quantized form from
all peer nodes (K concurrent transfers of M · K−1

K
values).

These are then summed up in unquantized form, post-processed
(AdaGrad, momentum), and redistributed to all peers, again
quantized. Thus, each minibatch gradient undergoes quantiza-
tion twice. The first quantization is applied to sub-gradients
which are summed up, reducing the quantization error through
averaging. The second quantization happens after AdaGrad,
where gradient values are in more homogeneous numeric range.

4. System Description
We implemented data-parallel deterministically distributed
SGD by combining 1-bit quantization and double buffering with
automatic minibatch-size selection, AdaGrad, and model paral-
lelism. We want to briefly describe these other aspects.

Eq. 4 reveals the main avenues to increase parallelizablity:
(a) growingN—maximizing minibatch size; (b) increasing Z—
data compression; and (c) reducing fixed cost T upd

calc . We ad-
dressed (b) by quantization in section 3.

For (a), we find that at any given point in the training, the
minibatch size N has an upper limit above which convergence
slows notably or fails [19, 8]. Thus, every 24h of data, we pro-
cess the next ≈45 minutes at different minibatch sizes and pick
the largest N that does not hurt convergence, based on training-
set frame accuracy. We find that more mature models allow for
larger N . So do smaller learning rates, so we also use a grad-
ually decaying learning-rate profile that was determined auto-
matically using frame accuracy on a cross-validation set on an
earlier configuration. Lastly, we use AdaGrad—a technique to
normalize gradients by their standard deviation over time or re-
cent samples [30, 31]. AdaGrad leads to faster convergence and
allows to increase the minibatch size earlier.

Our system can apply AdaGrad at three different places:
Locally on each node before quantization (which may bene-
fit quantization at the risk of introducing inconsistencies across
nodes); during data exchange (risking interference from quanti-
zation) after aggregation; and after momentum smoothing (sav-
ing memory and fixed cost while reducing the effect of AdaGrad
due to peaks being smoothed out). We find AdaGrad responds
best to quantized, unsmooted gradients.

To address (c), the fixed cost, and to benefit from dual-GPU
servers, we combine our system with model parallelism. Model
parallelism distributes model parameters over multiple GPUs
and can perfectly parallelize component-wise operations. It can
also reduce the variable cost, albeit with suboptimal efficiency.

5. Experimental Results
We evaluate our 1-bit data-parallel deterministically distributed
SGD training primarily on a Switchboard speech-to-text sys-
tem. The CD-DNN-HMM in this system is trained on the 309-
hour SWBD-I training set [28]. The model has 7 hidden layers

Table 1: Sub-batch computation time and T frm
calc (variable com-

putation cost per frame) for different sub-batch sizes.

sub-batch size 256 512 1024 2048 4096 8192
sub-b. time [ms] 59 89 143 260 490 955
T frm

calc [µs] 156 137 122 118 115 114

of dimension 2048, and an output dimension of 9304, a total of
M = 46M model parameters. The test set is Hub-5’00 (1831
utterances). We will also show a few results on different config-
urations as noted. Our hardware consists of a server equipped
with 8 NVidia Tesla K20Xm GPU cards, and a server farm of
24 dual-K20Xm servers connected through Infiniband.

5.1. Cost Measurements

First, we want to provide measurements for our three cost fac-
tors. Eq. (4) had assumed that T frm

calc does not depend on the
number of nodes, but Table 1 shows that it indeed does vary to
some degree with the sub-batch size in which computations are
performed. These times were measured on a single K20X us-
ing momentum and AdaGrad but no data parallelism. For this
configuration, the cost that does not depend on the sub-batch
size, that is, the gradient post-processing (momentum, two Ada-
Grad steps) and fixed cost (model update), was measured as
C · T post

calc + T upd
calc = 18.2 ms.

On our server farm, Z−1 ·T float
comm over Infiniband/MPI fluc-

tuates in the range 3 to 10 ms (with Z = 32), a little behind our
expectations for an 8 GB/s Infiniband link. With quantization,
our fixed cost T upd

calc is in the range of 9 ms. With half-batch
double buffering, the fixed cost per minibatch is 2 ·T upd

calc , while
without it, communication and computation get serialized such
that T float

comm has to be added into the fixed cost. Two-way model
parallelism cuts the fixed cost in half.

5.2. Effect of 1-bit Quantization

Table 2 shows the effect of 1-bit quantization on our main con-
figuration as well as two alternate setups, one using rectified lin-
ear units (ReLUs) instead of sigmoids, and one using singular-
value decomposed weight matrices [13] and a low-latency front-
end (SVD-LL). Shown are word error rates (WERs) for Hub-
5’00 and training-set frame accuracies. These setups use a fixed
two-step learning rate schedule per [2] and no AdaGrad. Quan-
tized setups are data-parallel with K = 4 nodes, except for the
first 24h of data, which was processed without parallelism or
quantization (cold start). 1-bit quantization works well across
all setups, at minor but consistent impact on training-set frame
accuracy. WER actually improves a little for the main setup,
which is probably noise. In all of these, error feedback is essen-
tial. Without it, training quickly diverges.

The table also shows that double buffering has minor im-
pact on accuracy—it undoes the small gain on the main setup,
while it does not change the WER of the ReLU setup.

Table 2: Effect of 1-bit quantization and double buffering.
Shown are Hub-5’00 WER and, in parentheses, training-set
frame accuracy.

WER / training frame acc [%] on
main setup alternate setups

configuration ReLU SVD-LL
baseline (not parallel) 16.5 (55.6) 16.5 (62.8) 17.6 (61.5)
+ 1-bit quant/data para. 16.3 (55.5) 16.6 (61.7) -
+ double buffering 16.5 (55.3) 16.6 (62.4) 17.7 (61.3)

1060



Table 3: Effect of AdaGrad at several points and double buffer-
ing. Shown are WER on Hub-5’00 and training-set frame accu-
racy (in parentheses), and end-to-end BP training times.

AdaGrad applied to... WER [%] GPUs time
momentum-smoothed gradient 16.5 (57.4) 1 41h
raw gradient (not parallelized) 16.2 (58.2) 1 35h
partial gradients (parallel, 4 nodes) 16.1 (57.4) 4×2 -
aggregate gradient (4 nodes) 15.8 (59.1) 4×2 8.1h
+ MB size tuning 3 x less often 15.9 (59.2) 4×2 7.3h
+ double buffering (DB) 15.8 (59.4) 4×2 7.3h
vs. no DB for MB-size selection 15.9 (59.1) 4×2 6.3h

5.3. When to do AdaGrad?
Table 3 analyzes where to apply AdaGrad in the process. First,
we can see that applying AdaGrad to the raw gradients be-
fore momentum, rather than the momentum-smoothed gradient,
leads to higher training frame accuracy and 0.3 points better
WER. We believe that this is because momentum smoothing
reduces the standard deviation and thus the effect of AdaGrad.

Row “partial gradients” adds data parallelism over K =
4 compute nodes, combined with 2-GPU model parallelism in
each compute node (more on that in Section 5.5). AdaGrad is
applied locally before quantization. While it leads to a small
WER gain, the training frame accuracy drops a little.

Shifting AdaGrad to after data aggregation, i.e. applying
it to quantized gradients (row “aggregate gradient”), presents
us with a pleasant surprise: frame accuracy jumps 1.7 points,
and WER drops 0.3 points. We have no good explanation for
this, other than quantization distributes outliers over multiple
minibatches, so that they impact the standard-deviation estimate
less. We take away that AdaGrad is best applied here.

This configuration reduces end-to-end training time from
35h to 8.1h (where the first 24h of data did not use data paral-
lelism/quantization and consumed 22 min alone).

5.4. Impact of MB-Size Selection and Double Buffering
The initial change from 41 to 35h is due to automatic minibatch-
size selection, which selected largerN . MB-size selection itself
has a cost. Doing it only every 72h of data instead of 24h re-
duces the time further to 7.3h, losing 0.1 point WER.

The next row (“+ double buffering”) of Table 3 shows that
double buffering (DB) does not give further speed-up; however,
we find that smaller MB sizes are selected. Disabling DB only
for MB-size selection reverts this, and now, DB reduces the run-
time to 6.3h. This represents a total 5.5-times speed-up from
using 4× 2 = 8 GPUs instead of one. As we hoped, half-batch
DB is both efficient and does not seem to change convergence.

Table 4 shows the training speeds with and without half-
batch DB over minibatch sizes N for 4 × 2 GPUs. DB up to
21% faster (N = 32k).

5.5. Combination with Model Parallelism
Table 5 shows results for two-way model parallelism (MP) for
our two systems, the compute server “farm” with Infiniband
connection, and the single “8-GPU” server. Without data paral-
lelism, a second GPU (1 × 2) is 55% efficient. Comparing the
same number of GPUs, MP only helps in one configuration, the

Table 4: Training speed in 1000 frames per second (kfps) over
minibatch size, without and with double buffering, 4× 2 GPUs.

N : 1k 2k 2.8k 4k 8k 16k 32k 64k 92k
no DB - 23 28 32 36 38 39 44 45
DB 15 23 28 34 39 45 47 49 50

Table 5: Combining data and model parallelism.
training speed [kfps] for N =

data×model 2880 16384
parallelism farm 8-GPU farm 8-GPU

1 × 1 7.5 7.4 8.2 8.0
1 × 2 11.7 11.7 12.7 12.6
4 × 2 26.9 25.0 42.3 40.9
8 × 1 26.9 26.5 51.6 50.6
8 × 2 34.8 - 72.5 -

16 × 1 30.2 - 77.9 -

communication-bound minibatch size 2880 with 16 GPUs. In
all other settings, MP is less efficient due to caching. The rea-
son we used MP throughout this paper is that using earlier, less
optimized code versions, we had measured a different balance.

5.6. Training a Production-Scale Model
Table 6 shows results for a production-scale model with 160M
parameters trained on 3300h of multi-bandwidth data including
Switchboard/Fisher and 1300h of wideband lectures. We test on
Hub-5’00 and RT03S of Switchboard, internal tele-conference
recordings, and three IWSLT sets (dev10, dev12, tst10) [29].
The two data passes use GMM and DNN alignments (generated
with a slightly outdated DNN for time reasons), respectively.
DB is not used. For this large model, model parallelism is about
90% efficient. The ‘1 × 1’ setups use fixed N = 1k, but ‘1 × 1
realign’ started from an earlier first pass model that used MB-
size control and has on av. 0.1 worse WER.

The ‘10 × 2’ setup uses conservative MB-size control and
achieves a 6 to 7 times speed-up using 20 GPUs. ‘20 × 2’ does
more aggressive MB-size control every 72h, and achieves over
10-fold speed-up, but at more notable accuracy loss.

6. Conclusion
We have shown that 1-bit quantization allows to significantly
reduce data-exchange bandwidth for data-parallel SGD at no or
nearly no loss of accuracy, making data-parallel distribution of
SGD feasible even with modern fast hardware (GPUs). For this
to work, quantization-error feedback is essential. Quantization
interacts well with AdaGrad. A 7 data-pass 309h-Switchboard
BP training of a 46M-parameter model completes in under 7
hours. A production-scale model of 160M parameters com-
pletes one pass through 3300h of data in under 24 hours, and
under 16 if a small accuracy loss is acceptable.

In [8], we had concluded that dramatic speed-ups from par-
allelizing standard SGD are not to be expected for speech-scale
DNNs. The proposed 1-bit quantization improves the situation
somewhat, but we still believe that the true breakthrough will
have to come from a more fundamental change of the training
algorithm that allows for greater parallelizability by its nature.

7. Acknowledgements
We’d like to thank John Langford for pointing us to the O(1)
all-reduce algorithm in Section 3.1.

Table 6: Training a 160M-parameter model over 3300h. Shown
is WER in % over 5 test sets, training time for two data passes.

data ×model Hub-5 RT03S IWSLT tele- time
parallelism ’00 FSH SWB all conf. (3300h)
1 × 1 14.5 15.1 21.2 15.0 19.4 157h

+ realign 13.2 14.1 19.8 14.1 18.5 155h
10 × 2 14.2 14.8 20.8 14.9 19.1 24.0h

+ realign 13.2 14.1 19.8 14.2 18.6 21.5h
20 × 2 14.3 14.9 20.8 15.1 19.2 15.6h

+ realign 13.1 14.4 20.1 14.5 18.7 14.0h

1061



8. References
[1] D. Yu, L. Deng, and G. Dahl, “Roles of Pretrain-

ing and Fine-Tuning in Context-Dependent DNN-HMMs
for Real-World Speech Recognition,” NIPS Workshop
on Deep Learning and Unsupervised Feature Learning,
Dec. 2010.

[2] F. Seide, G. Li, and D. Yu, “Conversational Speech Tran-
scription Using Context-Dependent Deep Neural Net-
works,” Interspeech, 2011.

[3] Q.-V. Le, M.-A. Ranzato, R. Monga, M. Devin, K. Chen,
G.-S. Corrado, J. Dean, and A.-Y. Ng, “Building High-
Level Features Using Large Scale Unsupervised Learn-
ing,” ICML, 2012.

[4] F. Niu, B. Recht, C. Re, and S. J. Wright, “Hogwild!:
A lock-free approach to parallelizing stochastic gradient
descent,” arXiv preprint arXiv:1106.5730, 2011.

[5] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin,
Q. V. Le, M. Z. Mao, M.-A. Ranzato, A. Senior, P. Tucker,
K. Yang, A. Y. Ng, “Large Scale Distributed Deep Net-
works,” NIPS, 2012.

[6] A. Coates, B. Huval, T. Wang, D.-J. Wu, and A.-Y. Ng,
“Deep Learning with COTS HPC Systems,” ICML, 2013.

[7] S. Zhang, C. Zhang, Z. You, R. Zheng, and B. Xu, “Asyn-
chronous Stochastic Gradient Descent for DNN Training,”
ICASSP, 2013.

[8] F. Seide, H. Fu, J. Droppo, G. Li, D. Yu, “On Paralleliz-
ability of Stochastic Gradient Descent for Speech DNNs,”
ICASSP 2014.

[9] “Delta-Sigma Modulation,” Wikipedia, http://en.
wikipedia.org/wiki/Delta-sigma modula-
tion.

[10] H. Franco et al., “Context-Dependent Connectionist Prob-
abilty Estimatation in a Hybrid Hidden Markov Model–
Neural Net Speech Recognition System,” Computer
Speech and Language, vol. 8, pp. 211–222, 1994.

[11] P. Zhou, C. Liu, Q. Liu, L. Dai, and H. Jiang, “A Cluster-
Based Multiple Deep Neural Networks Method for Large
Vocabulary Continuous Speech Recognition,” ICASSP,
2013.

[12] T.-N. Sainath, B. Kingsbury, H. Soltau, and B. Ramab-
hadran, “Optimization Techniques to Improve Training
Speed of Deep Neural Networks for Large Speech Tasks,”
IEEE Trans. on Audio, Speech, and Language Processing,
Vol. 21, No. 11, Nov. 2013.

[13] J. Xue, J. Li, and Y. Gong, “Restructuring of Deep Neural
Network Acoustic Models with Singular Value Decompo-
sition,” Interspeech 2013.

[14] S. Wiesler, J. Li, and J. Xue, “Investigations on Hessian-
Free Optimization for Cross-Entropy Training of Deep
Neural Networks,” Interspeech, 2013.

[15] B. Kingsbury, T. Sainath, and H. Soltau, “Scalable Min-
imum Bayes Risk Training of Deep Neural Network
Acoustic Models Using Distributed Hessian-free Opti-
mization,” Interspeech, 2012.

[16] X. Zhang, J. Trmal, D. Povey, S. Khudanpur, “Improving
Deep Neural Network Acoustic Models Using General-
ized Maxout Networks,” ICASSP 2014.

[17] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed Optimization and Statistical Learning via the
Alternating Direction Method of Multipliers,” in Foun-
dations and Trends in Machine Learning, Vol. 3, No. 1
(2010) 1–122.

[18] Q. Huo, Z. Yan, K. Chen, “Deep Learning Using Alternat-
ing Direction Method of Multipliers,” U.S. Patent Appli-
cation, filed on 4/8/2014.

[19] X. Chen, A. Eversole, G. Li, D. Yu, and F. Seide,
“Pipelined Back-Propagation for Context-Dependent
Deep Neural Networks,” Interspeech, 2012.

[20] F. Rosenblatt, “Principles of Neurodynamics: Perceptrons
and the Theory of Brain Mechanisms”, Spartan Books,
Wash. DC, 1961.

[21] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-
Dependent Pre-Trained Deep Neural Networks for Large
Vocabulary Speech Recognition,” IEEE Trans. Speech and
Audio Proc., Special Issue on Deep Learning for Speech
and Language Processing, 2011.

[22] G. Hinton, S. Osindero, and Y. Teh, “A Fast Learning
Algorithm for Deep Belief Nets”, Neural Computation,
vol. 18, pp. 1527–1554, 2006.

[23] F. Seide, G. Li, X. Chen, and D. Yu, “Feature Engineering
in Context-Dependent Deep Neural Networks for Con-
versational Speech Transcription,” Proc. ASRU, Waikoloa
Village, 2011.

[24] B. Kingsbury, “Lattice-based optimization of sequence
classification criteria for neural-network acoustic model-
ing,” ICASSP, 2009.

[25] D. Rumelhart, G. Hinton, and R. Williams, “Learning
Representations By Back-Propagating Errors,” Nature,
vol. 323, Oct. 1986.

[26] J. Martens, “Deep learning via Hessian-free optimiza-
tion,” ICML, 2010.

[27] M. Riedmiller and H. Braun, “A direct adaptive method
for faster backpropagation learning: the Rprop algorithm,”
International Conference on Neural Networks, 1993.

[28] J. Godfrey and E. Holliman, “Switchboard-1 Release 2,”
Linguistic Data Consortium, Philadelphia, 1997.

[29] “Evaluation Campaign,” IWSLT 2013, http://www.
iwslt2013.org/59.php.

[30] J. Duchi, E. Hazan, and Y. Singer, “Adaptive Sub-
gradient Methods for Online Learning and Stochastic
Optimization,” http://www.cs.berkeley.edu/
∼jduchi/projects/DuchiHaSi10.pdf, 2010.

[31] A. Senior, G. Heigold, M.-A. Ranzato, K. Yang, “An Em-
pirical Study of Learning Rates in Deep Neural Networks
for Speech Recognition,” ICASSP, 2013.

1062


