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ABSTRACT 

A simple 1-D model with low requirements for computing 
time is required to investigate parametric influences on the 
potentially adverse effects of pressure fluctuations driven by 
confined vapour bubble growth in microchannel evaporative 
cooling systems operating at high heat fluxes. A model is 
developed in this paper for the particular conditions of a 
channel of rectangular cross-section with high aspect ratio with 
a constant inlet flow rate (zero upstream compressibility). (The 
model will later be extended to the conditions of finite 
upstream compressibility that lead to transient flow reversal). 
Some parametric trends predicted by the model are presented. 

The simplifying assumptions in the model are examined in 
the light of a 3-D simulation by a commercial CFD code, 
described in an accompanying paper by the same authors. The 
predictions of pressure changes are in reasonable agreement. It 
is suggested that the 1-D model will be a useful design tool. 

 
1. INTRODUCTION 

Saturated flow boiling in assemblies of parallel 
microchannels is a potential method of cooling small devices 
operating at high heat fluxes, such micro-electronic circuits and 
fuel cells. Constrained bubble growth may cause fluctuations in 
pressure that interact with the fundamental processes of bubble 
nucleation and growth and may also cause flow reversals that 
disturb the distribution of flow between channels, as discussed 
in the accompanying paper by Zu et al. [1]. Flow reversals may 

be suppressed by large flow resistances at the inlet to each 
channel, designed to be similar in magnitude to the boiling 
pressure drop in a channel, without reference to the resistances 
in the inlet plenum connecting the channels or other sources of 
upstream compressibility. The pressure fluctuations within 
channels are not suppressed and observations by collaborators 
in an investigation of boiling and condensation in 
microchannels funded by the UK Engineering and Physical 
Sciences Research Council (private communications [2, 3]) 
suggest that disturbances may also propagate between channels 
through the downstream plenum. Parallel channels may also be 
cross-connected and, in the limit, become equivalent to a single 
channel with a rectangular cross-section of very large aspect 
ratio, in which the axial motion of individual large bubbles is 
poorly defined.  

Rational methods of design are required for a wide range 
of possible conditions that would be impracticable to 
investigate experimentally. Accurate 3-D CFD simulations 
with the fine computational grids required to model thin liquid 
films are expensive in computer time. A simplified approach to 
3-D simulation with assumptions derived from experimental 
observations is described in [1]. Further simplifications of the 
physics in 1-D models may reduce the requirements for 
computing time sufficiently to investigate the parametric 
influences on pressure fluctuations over a wide range of 
conditions and over sufficiently long periods to model start-up 
conditions and power transients. 
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1-D models for fully-confined bubble flow boiling have 
been around for a long time. Kew and Cornwell [4] developed 
a model for the pressure fluctuations required to accelerate 
liquid slugs trapped between growing bubbles with a uniform 
rate of heat input per unit length of bubble equal to the wall 
heat flux, implying the presence of a completely wetted wall. 
Kenning and Yan [5] measured pressure pulses moving with 
liquid slugs and confirmed that they were of the order of 
magnitude predicted in [4]. The Thome et al. [6] heat transfer 
model  (without pressure fluctuations) assumes a uniform rate 
of heat input corresponding to a wall of negligible thermal 
capacity but calculates the time required for the liquid film 
formed round an expanding bubble to dry out: the heat transfer 
coefficient is greatly reduced in the dry regions, leading to high 
periodic wall temperatures. The Shafri et al. [7] model for 
oscillatory heat pipes considers long confined bubbles with a 
finite liquid film at each end, moving between wall regions at 
uniform superheat or subcooling. The Wen et al. [8] model for 
bubble growth in a uniformly superheated capillary tube 
without inlet flow considers transient conduction in the liquid 
film and the wall, at a considerable additional cost in 
computing time. Comparison with experimental data was 
improved by assuming that the film length was limited, not by 
evaporation but by roll-up due to capillary forces at finite 
contact angles; steady-flow estimates of viscous stresses in the 
accelerating liquid slugs were found to be incompatible with 
the data. All the models [4, 6, 7, 8] assume uniformity of 
temperature and pressure within a bubble, which cannot hold in 
very elongated bubbles as transition to annular flow is 
approached. In [4, 6, 8] the vapour and liquid-vapour interface 
are assumed to be at the saturation temperature corresponding 
to the instantaneous bubble pressure. 

The new feature of the 1-D model presented in Section 2 of 
this paper is that confinement is assumed to occur in two stages 
appropriate to growth in a channel in a channel of rectangular 
cross-section of high aspect ratio r = w/h, suggested by the 
experimental observations in [1] in a channel with three heated 
sides and an adiabatic window on one major side w. In the first 
stage of partially confined growth, the bubble has depth h and 
equal width and length b(t) < w. In the second stage of fully 
confined growth, the bubble fills the channel cross-section 
(except for thin liquid films) and only its length z (t) increases 
with time. Two versions of the equations are presented, one 
with constant vapour density (suitable for small changes in 
absolute pressure during bubble growth), the other with 
saturated vapour density corresponding to the instantaneous 
pressure. The other features of the model are kept as simple as 
possible: growth of a single bubble due to constant wall heat 
flux, with constant liquid flow entering the channel and 
constant exit pressure, viscous stresses in the liquid negligible 
compared to inertial stresses. More advanced features, 
including finite upstream compressibility leading to flow 
reversal, will be described in subsequent papers. 

All 1-D models have problems with the specification of the 
initial values of various time derivatives that depend on the 
precise nature of bubble growth from a nucleus prior to 
confinement. During unconfined growth, shortly after 
disturbance of the meta-stability of the nucleus, there is a short 
period of inertially controlled growth [9]. Kandlikar [10] 
suggested that a pressure spike associated with nucleation 
could cause flow reversal. Pressure spikes were not detected in 

the experiments in [5,8] in relatively large channels with cross-
sectional dimensions of the order of 1 mm, but this is not to say 
that they do not occur in much smaller channels. The 
specification of initial conditions was discussed in [8, 11] and 
is considered further in Section 4 of this paper. This raises the 
general point that the simplifying assumptions in 1-D models 
have limitations on their ranges of validity that should be re-
examined for each new application. Some parametric trends 
predicted by the constant vapour density model are presented in 
Section  2.  In Section 3, the predictions of pressure transients 
and other fluid mechanical aspects of the new model are 
compared with the more detailed modelling in the simplified 3-
D CFD simulation introduced in [1]. Modifications to the 1-D 
model incorporating properties variation are presented in 
Section  4. 

NOMENCLATURE 
A Heat transfer area ( m2 ) for bubble. 
b The size (m), width and breadth, of the  
    partially-confined bubble. 
cp Specific heat.  
h Bubble height, equal to channel depth (h). 
h Enthaply ( J/kg). 
hlv Latent heat of vaporisation (J/kg). 
L1, L2     Distance (m) of nucleation site from channel inlet and  
 outlet   respectively. 
M Momentum (kg m/s). 
m  Mass flow rate (kg/s). 
m Mass ( kg ). 
p1, p2        Channel (control volume) inlet and outlet pressures  
 (Pa) respectively. 
q Heat flux ( W/m2 ). 
Q Heat transfer ( J ). 
r Channel aspect ratio. 
t Time (s). 
tc Time (s) required for full confinement. 
t' t - tc , time scale (s) for fully-confined bubble growth. 
T Temperature ( K). 
u Internal energy ( J/kg). 
U Total internal energy ( J ). 
U1          Channel inlet velocity (m/s) or liquid velocity at the  
               upstream end of the bubble. 
U2          Channel outlet velocity (m/s) or liquid velocity at the  
               downstream end of the bubble. 
v             Specific volume (m3 /kg ). 
V            Bubble volume (m3). 

V          Bubble volume growth rate ( m3 / s ). 
w            Channel width (m). 
xu, xd      Locations (m) of the upstream and downstream ends  
               of the bubble from the channel inlet respectively. 
z             Length (m) of the bubble in fully-confined bubble 
               growth.  
 
Greek Symbols 

τ            Time constant (s), 
q

hhρ lvv  

ρ Density  (kg / m3 ). 
 
Subscripts and Superscripts 
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l Liquid. 
v Vapor. 
s Saturated. 
c confinement (when full confinement begins). 

 

2.  1-D MODEL FOR CONFINED GROWTH, NO 
UPSTREAM COMPRESSIBILITY  
 

 
The channel is rectangular, of width w, depth h <<w and length 
L1+L2. Heat input is on one side w with an adiabatic window 
on the other side w and negligible heat input on sides h (for 
high aspect ratio, w/h). A single nucleation site is assumed, 
located at L1 from the inlet and L2 from the outlet, as shown in 
figures 1a and 1b. Inlet compressibility is absent so the inlet 
velocity U1 is constant. 
 
2.1 Partially-confined growth ( PC ) 

In a high aspect ratio channel, it takes some time for the 
bubble to grow to the channel width w as it moves along the 
channel. This is defined as partially-confined growth, in which 
the bubble is confined fully along the depth h, except for very 
thin liquid films between the bubble and the surfaces w.  

Partially-confined growth is assumed for the growth from A 
= h2 at time t=0, through A=[b(t)]2 to A=w2. The earliest stage 
of unconfined growth from a nucleus with dimensions << h is 
neglected. 
 Neglecting the volume of the thin liquid films on sides w, 
the volume of the bubble V(t) is hA(t). Assuming constant heat 
flux q through the single contact area A and neglecting the 
change of ρv and hlv with pressure, the heat balance equation 
for bubble growth is given by  

qA
dt

dA
hhρ lvv                                                                  ( 1a )                                                                                          

Let b2 be the area of the bubble at any instant of time, then 

qb
dt

db
h2hρ lvv              (1b ) 

The initial condition at time t=0 is b = h. Then  
)t/(2heb                ( 2 ) 

where 
q

hhρ
τ lvv              ( 3 ) 

The inlet velocity U1 is constant. The velocity at the 
downstream of bubble is U2(t), which varies with time as the 
bubble grows.  

dt
wh

V
d

UU 12








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Substituting ( 2 ) in ( 4 ) gives 
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Momentum within the control volume defined by the channel is 
given by 
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        ( 6 )  

in which the first term represents the momentum associated 
with the upstream liquid, the second term represents the 
momentum associated with the accelerated liquid at the 
downstream side of the bubble, and the third term represents 
the momentum associated with the bubble and liquid along side 
it, with velocity assumed to be (U1+U2)/2. 
 The pressure difference across the control volume, 
neglecting friction, is given  by 

                
           (7) 

 
Substituting ( 2) , ( 5 ) and ( 6 ) in ( 7 ) gives 
 

 
 

 
        (8) 

 
 
                                                                                                              

The time required for confinement, tc, from b = h (at time t = 0) 
to b = w ( at time t = tc), is obtained from equation ( 2 ) as  
       tc = 2 τ ln (w/h)                         (9)    
 Location of the upstream end of the bubble from the channel 
entrance is given by 
      xu = L1+U1t              (10) 
Location of the downstream end of the bubble from the channel 
entrance is given by 
      xd = L1+U1t+b =  L1+ U1t + het/(2τ)                  (11)                

 
2.2 Fully-confined growth (FC) 

Fully-confined bubble growth commences from the time at 
which b = w. Let t' be the new time scale for the fully-confined 
growth.  
       t' = t – tc , with A = w2 at t' = 0. 
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Let z ( t' ) be the length of the fully-confined bubble at any 
instant of time t'. 

Neglecting the volume of the liquid film on sides w, and 
neglecting the change of ρv and hlv with pressure, and assuming 
constant heat flux q, the heat balance equation for bubble 
growth is given by 

qz
td

dz
hhρ lvv 


              (12)                                                                                                    

The above equation, on integration, and substituting z = w at t' 
= 0, yields  

 /twez                             (13) 

where time constant 
q

hhρ
τ lvv                         (14) 

The exponential growth is consistent with the experimental 
observations reported in [1]. 

      
td

dz
UU 12 

 /τt
1 e

τ

w
U 






                                     ( 15 ) 

Momentum within the channel control volume is given by 




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 
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2
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                      ( 16 )  

Pressure drop across the control volume, neglecting the 
friction, is given  by expression ( 7 ). 
Substituting ( 13) , ( 15 ) and ( 16 ) in ( 7 ) gives 
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        (17 )  

   
Location of the upstream end of the bubble from the channel 
entrance is given by, 

xu = L1+U1( t'+tc )             (18)                                                                                
Location of the downstream end of the bubble from the channel 
entrance is given by 

xd = L1+ U1( t'+tc )+ z =  L1+ U1( t'+tc )+ wet'/τ                (19)   
 

Expression (17) is valid until the downstream end of the bubble 
reaches the channel outlet. 
From expressions ( 8 ) and ( 17 ), there is a step decrease in                    
(p1 – p2) of l (w/)2/4 at the instant of confinement, and 
therefore the model needs some improvement to allow smooth 
transition from partially-confined growth to fully-confined 
growth.  

Results for water are shown in figures 2 – 5 for  p2 =  1 bar, 
with properties corresponding to p2 ( i.e. neglecting their 
change with pressure p1 inside the bubble ). 

Figure 2 shows the effect of the location of the nucleation 
site. With the decrease of L1 ( or the increase of L2 ), the 
pressure difference increases, as the initial amount of 
accelerated liquid downstream of the bubble increases. With 
time, the acceleration increases but the amount of accelerated 
liquid on the downstream side of the bubble decreases, so that 
the pressure drop reaches a maximum value and then declines. 

The saturation temperature scale corresponding to the inlet and 
bubble pressure p1 is also shown in figure 2. Figure 3 shows the 
locations of the upstream and downstream ends of the bubble 
from the channel inlet, the difference being the length of the 
bubble. 
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Fig.  2: Transient pressure drop for different locations of the  
            nucleation site from inlet. q = 200 kW/m2, U1 = 0.7  
           m/s , w = 1.5 mm, h = 0. 38 mm, L1+L2 = 40 mm. 
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Fig.  3: Bubble locations for different L1.  q = 200 kW/m2, 
            U1 = 0.7 m/s , w = 1.5 mm, h = 0. 38 mm,  
             L1+L2 = 40 mm. 
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Fig.  4: Transient pressure drop for different q.  U1 = 0.7 m/s ,  
             L1  = 0 mm, L2 = 40 mm, w = 1.5 mm, h = 0. 38 mm. 
 

Figure 4 shows that with the increase of the heat flux, the 
pressure drop increases, caused by the increase in the 
acceleration of the liquid. The peak pressure difference is about 
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1.9 bar for 400kW/m2. Very high pressure drop also means that 
the variation of vapour density with the pressure (by a factor of 
2.7 in this example) has to be considered in the model for 
pressure drop. Constant vapour density (corresponding to 1bar) 
may overestimate the pressure drop.               
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Fig.  5: Transient pressure drop for different w.  U1 = 0.7 m/s ,  
             L1  = 0 mm, L2 = 40 mm, h = 0.38 mm, q = 200 kW/m2. 
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Fig. 6: Transient pressure drop for different U1.   w = 1.5 mm,  
             L1  = 0 mm, L2 = 40 mm, h = 0.38 mm, q = 200 kW/m2. 
 

Figure 5 shows the pressure drop for different channel 
widths - ranging from 1.5mm ( hydraulic diameter 0.61mm) to 
6mm (hydraulic diameter 0.71mm) for the same minor 
dimension h = 0.38 mm. The effect is relatively small, provided 
w >> h. At the time of full confinement, there is a sudden 
pressure decrease between partially-confined growth and fully-
confined growth) of about 85 Pa for 1.5mm width, and 1346 Pa 
for 6mm width, so the model needs some improvement to 
allow a smooth transition. With increasing channel inlet 
velocity, figure 6, the amount of the accelerated liquid slug 
decreases, resulting in a decrease in the pressure drop. 
 Both the partially-confined and fully-confined models 
assume that only part of the heat flux from the wall causes 
evaporation. The rest must cause superheating of the liquid. At 
present, heat transfer from the bulk liquid to the bubble is 
neglected. Unlike the Thome et al. heat transfer model [6], 
local time-averaged phase equilibrium is not assumed. 

3. COMPARISON OF 1-D MODEL AND 3-D 
SIMULATION 

A full 3D numerical simulation of confined bubble growth 
during flow boiling in a mini-micro channel based on the 

volume of fluid (VOF) method [12] available in the CFD 
commercial code FLUENT 6 has been presented in [1].  To 
validate the 1-D analytical results, the 3-D simulations are 
performed with negligible viscous forces and surface tension 
stresses, in order to be consistent with the 1D model. The 
volume of the bubble is specified on the basis of analytical 
results; and a transient vapour mass flow rate, based on the 
analytical results, is specified at the bubble-wall interface to 
approximate the bubble growth. 

Uniform 40100500   hexahedral elements are used for 
meshing the channel. A grid sensitivity study was firstly 
performed for the early stages of development of the flow. It 
was found that the pressure different between the inlet and 
outlet of the channel, when t=0.005 and 0.007 ms, changes less 
than 1.98% and 2.02% respectively when the grid size was 
changed from 40100500   to 802001000  . To save the 
computational resources, the mesh of 40100500   was used 

for this simulations. The time step size was set at s6101  . At 
each time step, the solution was assumed to converge when 
normalized residuals of the continuity and all other variables 
are less than 10−3. In addition, the maximum number of 
iterations per time step was set at 20. 

For partially-confined bubble growth, the bubble volume at 
a specified time t is given by 

 
/32)()( t

ud ehxxhtV   .                                           (20) 
 

The rate of volume growth at the time t is 
 

 /)( /3 tehtV    .                                                           (21) 
 

For fully-confined bubble growth, the bubble volume at a 
specified time t is given by 
 

/)(2)()( ctt
ud ehwxxhwtV                                      (22) 

 
Therefore, the rate of volume growth at the time t is 
 

 /)( /)(2 cttehwtV   .                                                     (23) 
 

As a result, the vapour mass flow rate used in the present 
simulation is specified by 
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tt
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 .                   (24) 

 
The comparison of 1-D model and 3-D simulation is shown in 
Figure 7 for the case of U1=0.7m/s, q=200kW/m2, w=1.5mm, 
h=0.38mm, L1 =0 mm and  L2 = 40mm. The fluid (water) 
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properties used in the simulation are the same as those used in 
the 1-D model. The trend of pressure development with time 
obtained by both methods agrees quite well, although the 3-D 
numerical results are slightly lower than those obtained by the 
very simple momentum model in the 1-D analysis.  

 
Fig. 7: Comparison of 1-D model and 3-D simulation 

 

4.  MODIFIED 1-D MODEL WITH SATURATED 
VAPOUR PROPERTIES DEPENDENT ON PRESSURE. 

In section 2, qualitative effects of various parameters have 
been studied using simple analytical expressions obtained 
assuming constant vapour density.  Though this model enables 
a quick rough estimates of the pressure drop, the deviation 
between its predictions and the true values  will increase as the 
heat flux  (or pressure drop) increases, due to the change in 
vapour density. Therefore, vapour density change with pressure 
and its time derivative have to be considered for accurate 
results. 

Equations ( 1 ) and ( 12 ) are based on the usual simple 
balance between the heat transfer rate from the wall and the 
rate of evaporation, assuming constant vapour density 
independent of pressure.  
A more realistic derivation of the equation for bubble growth 
rate from fundamental thermodynamic principles is as follows, 
although it still assumes uniform equilibrium conditions within 
the bubble at any instant. 

Let p, mv, uv, vv, Ts (p) be the initial pressure, mass, 
internal energy, specific volume and saturation temperature of 
the vapour bubble respectively.  For a closed system mv + dm, 
let dm be the mass of the liquid with internal energy ul and 
specific volume vl, that is converted to vapour in time dt. Let 
p+dp, mv+dm, uv+duv, vv+dvv, Ts (p+dp) be the new pressure, 
mass, internal energy, specific volume, and saturation 
temperature of the vapour bubble respectively, figure 8 a-b. 
 

             

 

 

 

                  ( a )                                         ( b ) 

Fig. 8:  Evaporative growth with variable pressure. 
 

 
pdVdUqAdtdQ               (25) 

  
   lvvvvv

lvvvvv

dmvvmdvvdmmp

dmuumduudmmqAdt




          (26) 

 
whence,  
     

    )pvdm(u)pdv(dumqAdt lvlvvvv            (27) 

 
 Since  h = u+pv               (28) 
 
 equation ( 27 ) can be written as  

     lvvvv h dmdp)v(dhmqAdt             (29) 

Assuming the vapour is an ideal gas,  

   spvv dTCdh                       (30) 

From Classius-Clapeyron equation, 
slv

lv

s Tv

h

dT

dp
             (31) 

For vl << vv,  

   
sv

lv

s Tv

h

dT

dp
               (32) 

 

vvv hAdρdAhρ)d(Aρh dm                               (33) 

 
Substituting ( 30), (32) and (33) in (29), 
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h
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A
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ρ

A
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dA
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spv
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v
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                                                                                              (34)  
 
Let the pressure drop across the expanding bubble be negligible 
compared to that across the accelerated liquid slug, then the 
properties, density derivative and pressure derivative in (34) 
correspond to the channel inlet pressure p1 ( t ). 
 
4.1 Partially-confined growth ( PC )    

For partially-confined growth, A = b2.  Then the bubble 
growth equation  (34) can be written as  
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
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


dt
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1

h
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b
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dρ

2ρ

b

hh2ρ

bq

dt

db

1
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Spv

lvv

v

vlvv
          (35)  

 

     
dt

db

w

2b
UU 12                                                      (36)  

     

2

2

2
2

dt

db

w

2

dt
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w

2b

dt

dU






                                     (37) 
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            p 
          Ts(p) 
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mv +dm 
uv + duv 

vv + dvv 
Ts(p + dp) 
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Using equations (6) and (7), and assuming ρv as constant in the 
third term of the expression (6), the expression for pressure 
drop is derived as  
 

 

   

    
dt

dU
bρρwbρ

2wρ

1

UU
dt

db
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dt

db
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2wρ

1

dt

dU
btUL

dt

db
UU

U
ρ
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22
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l

21vll
l

2
1212

2
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l

21


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




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





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




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


    (38)  

 
p2 is assumed constant, equal to 1bar in the examples in this 
paper.   

 
At time t = 0, b = h.                          (39) 

 
Transient pressure p1 ( t ) is obtained by solving the equations 
(35 - 38 ) using finite difference method and taking time step 
Δt. 

Since dρv/dt and dp1/dt are unknown at time t = 0, and are 
required for the bubble growth equation (35), expression (8) is 
used for obtaining p1 (t =0). Here expression (8) is solved 
iteratively till ρv corresponds to p1. These will be p1 (t=0) and 
ρv (t=0), which, coupled with db/dt from the expression (2) for 
t=0, are then used for the next time step for obtaining dp1/dt 
and  dρv/dt.   

 

Δt

0)(tpΔt)0(tp

dt

dp 11

Δt0t

1 











                   (40) 

Δt

0)(tρΔt)0(tρ

dt

dρ vv

Δt0t

v 








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                 (41) 

0t
0tΔt0t dt

db
Δtbb


 






           (42 ) 

 
Since p1 ( t =0+Δt ) and ρv ( t =0+Δt ) are unknowns in (40) 

and (41) respectively, transient pressure p1 ( t =0+Δt ) is 
obtained by solving the equations  ( 35-38 ) iteratively using 
finite difference technique. Similar procedure is followed for 
the subsequent time steps till the value of b reaches w. This 
time is the confinement time, tc. 
 
4.2 Fully-confined growth ( FC ) 
For fully-confined growth, A = wz. 
Then the bubble growth equation (34) can be written as  
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                                                                                               (43)                

dt

dz
UU 12                (44) 

2

2
2

dt

zd

dt

dU
                                                       (45) 

 
Using the expressions (16) and (7), and assuming ρv as 

constant in the third term of the expression (16), the expression 
for pressure drop is derived as 
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At time t = tc, z =w.  The transient pressure p1 ( t ) is 

obtained by solving the equations (43-46) using a finite 
difference method, and in the same way as described for 
partially-confined growth. 

For linking partially-confined growth and fully-confined 
growth, the following procedure was used.  
Let ic be the time step at which b reaches w in partially-
confined growth. Let jc be the time step at which fully-confined 
growth starts. Here ic = jc. dp1/dt and corresponding dρv/dt at jc 
are obtained by using p1 ( ic -1 ) and p1 ( jc ).  Since p1 ( jc ) and 
ρv ( jc ) are unknowns,  p1 ( jc ) and the corresponding  ρv ( jc )  
are obtained by solving the equations  ( 43-46) iteratively using 
finite difference technique. Similar procedure was followed for 
the subsequent time steps till the downstream end of the 
bubble, xd, reaches the channel outlet. 
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   Fig.  9: Transient pressure drop for different cases.  
                L1 = 0 mm, L2 = 40 mm, q = 400 kW/m2, U1 = 0.7  
   m/s , w = 1.5 mm, h = 0. 38 mm.   
 1, 2: PC and FC with the modified model, and   
                     linking PC and FC at the transition. 
    3, 4: PC and FC with the modified model, and without  
                     linking PC and FC at the transition. 
 5, 6: PC and FC for constant vapour density (p2). 
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Figure 9 shows the transient pressure drop for water with 
the modified model for 400 kW/m2. Here, ρv, Ts and hlv 
corresponding to p1 are evaluated from the expressions 
obtained by curve-fitting the data from property tables.  cpv for 
water vapour is taken as constant, equal to 2.076 kJ/ kg K 
(equal to the ideal gas value). The peak pressure drop obtained 
with the modified model is almost one-third of that obtained 
with constant vapour density and occurs later in bubble growth. 
The change of vapour density with the pressure and the density 
derivative term in the bubble growth equation are mainly 
responsible for this variation. When the bubble downstream 
end reaches the channel outlet, the pressure drop is about 60 
kPa, unlike the constant vapour density case, wherein the 
pressure decreases rapidly. This is because, as the pressure 
starts decreasing sharply after reaching the peak, the vapor 
density derivative becomes a high negative value and the whole 
density derivative term becomes a huge positive value as there 
is negative sign for this term in the expression for bubble 
growth equation (43 ), and this results in a very high dU2 /dt, 
making the second term in the expression (46) a very high 
value, and more than the decrease in the first term in the same 
expression, and hence the total pressure drop is about 60 kPa at 
this point, which is basically the pressure drop across the 
bubble. Here the model stops when the downstream end of the 
bubble reaches the channel outlet but, as the bubble passes 
through the channel outlet, the pressure drop is expected to go 
down to zero as z decreases to zero, no matter what dU2 /dt is. 
 With PC-FC linking, as described in the paragraph 
preceding figure 9, there is a rise in the pressure drop following 
confinement, and then a decrease before increasing again. 
Without linking, i.e, for FC, at t = tc, constant vapour density ( 
corresponding to pressure p1( t ) ) expression as given in the 
section 2.2 was used, and this resulted in a sharp jump ( or 
discontinuity) as shown in figure 9. This shows the 
sensitiveness of the initial condition ( or transition condition) 
for fully-confined growth. Future study is aimed at working out 
an appropriate mechanism ( or condition) for transition from 
partially-confined to fully-confined growth, with inputs from 
the experimental observations. 
For the modified model, time steps ( Δt ) of 10-5 , 10-6 and 10-7 
s were used. The difference between the results obtained by 
using  10-5 s  and  10-6 s is about 1% and that between 10-6 s  
and  10-7 s is about 0.2%. During the time when there is a sharp 
change of pressure ( or a very high pressure derivative)  as the 
bubble downstream end approaches the channel outlet, time 
step of 10-8 s was used. 
 The problem of achieving a smooth transition from 
unconfined (equivalent to partially confined) growth to fully 
confined growth in a circular tube in models that include the 
dependence of vapour density on pressure was recognised and 
discussed in [8, 11]. Localised experimental measurements of 
pressure are required to determine whether the transition really 
is smooth. 
 Here the growth model with constant heat flux eliminates 
the second cause of feedback between pressure changes and 
evaporation rates, the effect of changes in saturation 
temperature on q(t), e.g. for conditions of constant wall 
superheat.  This will also be a part of the future study. 

5. CONCLUSIONS 
 A simple 1-D model with constant properties for studying 
the qualitative effect of various parameters such as the location 
of the nucleation site, heat flux, inlet velocity and channel 
cross-section dimension on the transient pressure drop in 
partially-confined and fully-confined bubble growth stages has 
been presented.  A 3-D numerical simulation based on the 
analytical bubble volume has been performed with FLUENT 6. 
Transient pressures obtained by 3-D numerical method agree 
reasonably well with those obtained by the 1-D model, though 
the former gives slightly lower values than those obtained by 
the 1-D model. 
A modified 1-D model with variable properties has also been 
presented for accurate estimation of the transient pressure drop. 
More study is required on linking the partially-confined growth 
to the fully-confined growth. More complicated conditions 
such as variable nucleation frequencies and multiple confined 
bubbles along the channel will be implemented in the model 
later. 
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