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ABSTRACT 

Transformation of both the response variable and the predictors 
is commonly used in fitting regression models.  However, these 
transformation methods do not always provide the maximum 
linear correlation between the response variable and the 
predictors, especially when there are non-linear relationships 
between predictors and the response such as the medical data set 
used in this study.  A spline based transformation method is 
proposed that is second order smooth, continuous, and 
minimizes the mean squared error between the response and 
each predictor.  Since the computation time for generating this 
spline is O(n), the processing time is reasonable with massive 
data sets.  In contrast to cubic smoothing splines, the resulting 
transformation equations also display a high level of efficiency 
for scoring.  Data used for predicting health outcomes contains 
an abundance of non-linear relationships between predictors and 
the outcomes requiring an algorithm for modeling them 
accurately.  Thus, a transformation that fits an adaptive cubic 
spline to each of a set of variables is proposed.  These curves are 
used as a set of transformation functions on the predictors.  A 
case study of how the transformed variables can be fed into a 
simple linear regression model to predict risk outcomes is 
presented.  The results show significant improvement over the 
performance of the original variables in both linear and non-
linear models.   
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1. INTRODUCTION 
 
Transformation methods (Draper and Smith, 1981) are 
commonly used in regression analysis.  Most of these 
transformation methods are very simple because it is not only of 
interest in the prediction, but also in observing the relationship 
between predictors and the response.  Although there are 
transformation methods such as those proposed by Breiman and 
Friedman (1985) that can maximize the correlation between 
variables, this method is not suitable when there are piecewise 
relationships.  A transformation that can maximize the linearity 
between predictors and the response is proposed.  The proposed 
method works well even if there are piecewise relationships.  In 
data mining context, this method is very useful because the 
focus is on maximizing the predictive value (Hastie et al., 2001) 
while limited in time spent on understanding this relationship 
between variables.   
Many different non-linear modeling techniques claim to 
describe relationships in non-linear variables.  However, due to 
the large number of non-linear patterns to investigate, even if 
sufficient computational power is available, the probability of 
finding false patterns is increased. Rather, analysis and 
transformation of one variable at a time to maximize its linear 
relationship to the dependent variable maintains low complexity 
of the solution, if done carefully.  While this algorithm does not 
identify interactive relationships in the data, it does not take 
away from the ability to model interactions either.  The gain in 
using a piecewise algorithm versus combinations of functions on 
the entire range of values is that the complexity of the model 
can be kept low, while effectively adapting to different behavior 
at different ranges within a predictor. 
While many spline algorithms (Boucheta and Djeddi, 1994; 
Lindstorm, 1999; Prvan, 2000; Luo and Wahba, 1997; and Jupp, 
1978) exist, a smooth series of third order polynomials was 
chosen.  Because of the strange distributions of real-world data, 
we will show that polynomial curves cannot always fit the 
relationship between variables accurately.  Cubic smoothing 
splines may be a good fit, but it is often the case that one part of 
the curve works well with one smoothing constant, and the other 
side of the curve works well with a different smoothing 
constant. 
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The data is an 115,000 member subset of a repository of various 
health plans stored at Medical Artificial Intelligence, Inc. 
(MEDai).  The sample is constrained to members enrolled for 
the full period being evaluated and the variables available to be 
used as predictors are based on ETGs (Episode Treatment 
Groups).  The data set is one used to project future annual cost 
based on previous charges within 21 ETG classes of drugs being 
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taken by those members.  The classes of drugs include Arthritis, 
Asthma, Bronchitis, Breast Neoplasm, CHF (Congestive Heart 
Failure), CNS (Central Nervous System), CV medications, 
Degenerative Diseases, Dermatology, Diabetes, Fractures, GI, 
GU, Hypertension, Metabolic, Pneumonia, Psychosis, Renal 
Failure, Skin Inflammation, Tonsillitis and Trauma. 
The relationship between these drug costs and future healthcare 
cost generally is extremely non-linear, and has a high number of 
outliers.  These relationships will be modeled individually using 
the adaptive spline, transformed, and finally fed into a 
multivariate model for evaluation. 
While multi-dimensional splines are theoretically obtainable, it 
has been found that these over-fit very quickly as the number of 
variables increases (Fan and Gijbels, 2000).  In order to create a 
generalizable model, we chose to smooth the data in one 
dimension at a time, and feed the transformed variables into a 
global linear model. 
Transformation of the response variables are not considered 
(Draper and Smith, 1981) because of the large residuals that 
those transformations create in modeling these kinds of data sets 
with a high level of noise.  In fact, previous tests with similar 
data sets where the response variable under-went a 
transformation yielded R-Squared values less than zero because 
the bias is so great. 

 

2. SPLINE SELECTION 
 
The proposed choice of splines is one that is flexible enough to 
adapt to practically any non-linear relationship, but one that is 
smooth and has a minimal number of degrees of freedom to 
prevent over-fitting.  Given a set of knots (x-coordinates 
specified only), we construct the set of cubic curves beginning 
and ending at the knots that collectively minimize the Mean 
Squared Error.  To keep the degrees of freedom at a minimum, 
we require 1st and 2nd order smoothness at the knots.  No 
boundary conditions are imposed at the end-points, leaving the 
number of degrees of freedom to be N+3, where N is the 
number of segments used for constructing the curve. 
 

2.1 Derivation of the Spline Coefficients 
 
Given the set of x-coordinates  

Nxxx ..., 10   

construct the N cubic equations with end-points at these x-
coordinates minimizing the sum of the squares of the errors, 
while meeting the following 3N-3 smoothing conditions 
(matching end-points, first, and second derivatives at nodes): 
 
For i = 1 to N-1, 
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Define the N equations, I = 1 to N: 
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Define the Error of the aggregate curve: 
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There are 4N coefficients that need to be solved for, but the 3N-
3 smoothing conditions leave only N+3 degrees of freedom on 
which the optimization will be performed.  If the following 
unknowns can be solved for 
 

(1) [ ]Nadcb ..1111 ,,,  

 
the remaining 3N-3 coefficients can be written using the 
following algorithm: 
 
For i = 2 to N: 
  
(2)
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Now set the N+3 partial derivatives of the Error Function equal 
to zero.  Also, we may refer to the variables in (1) as  
 

[v] = [ ]321 ..., +Nvvv  

 
Setting the partial derivatives to zero yields the following N+3 
equations.  For each i from 1 to N+3 
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The partial derivatives of the N individual cubic pieces can be 
denoted by 
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The notation is changed to accommodate the fact that the 4N 
coefficients are not known, but are linear functions of the N+3 
unknowns.  aj, bj, cj, and dj will now be notated as the numeric 
vectors [aj], [bj], [cj], and [dj] all with dimension N+3.  This 
reduces the equation (3) to a system of linear equations 
[A][v]=[b].  Multiplying out the terms within the summations so 
that both sides of the equation are functions of x, we get: 
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Any matrix solver will yield the N+3 unknown values of [v], 
and the remaining 3N-3 coefficients can be calculated by 
substituting the N+3 values into equation (2).  The 4N 
coefficients have now been calculated. 
 

2.2 Resulting Spline Curves 
 
For the result presented in this paper, an automated procedure is 
used, recursively finding the best location for an additional knot.  
A significance test is performed comparing the change in 
accuracy before and after the proposed addition of each knot.  If 
the p-value is greater than 0.01, the knot is not added and the 
iterations are stopped.  This procedure finds that it is best to 
concentrate most of the knots where the curve is most non-linear 
and dense with data points.  With the drug cost variables, it is 
clearly the left side of the curve.  On hypertension drug cost, 
knots were placed at x={0,2,5,15,30,50,100}.  The knot at x=0 
would normally be unnecessary because it is at the end-point, 
but this particular data set had 5-10 missing values per variable 
(out of over 300,000), and they were assigned a value of –1.  
Having a knot there prevented those few data points from 
having undue influence the rest of the curve. 
 

 
Figure 3: Modeling hypertension drugs versus next year 
dollar cost.  Spline is shown in red.  Regression line is 
shown in blue. 

 
Similarly, knots were placed at x={0,2,5,10,20,60,200} for 
arthritis drug cost. 

 

 
Figure 4: Modeling arthritis drugs versus next year dollar 
cost.  Spline is shown in red.  Regression line is shown in 
blue. 
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The curves appear visually to follow the non-linear trend of the 
relationship between the independent variables and the response 
variable.  It is easier to see in the hypertension graph that the 
smoothness restrictions prevent the third order segments of the 
spline from over-fitting to some of the bobbles in the 
relationship that appear random.  The 95% confidence intervals 
at those points show that the bobbles are not statistically 
significant, and that the spline correctly maintains the 
relationship of lowest complexity that truly follows the trend of 
the data. 
Attempts were be made to fit these relationships with 
polynomial curves.  The resulting curves are shown in figures 5 
and 6. 
 

 
Figure 5: Modeling hypertension drugs versus next year 
dollar cost.  Similar to figure 3 plus 2nd and 3rd order 
polynomial curves shown in blue. 

 
On hypertension drugs, the 3rd order polynomial fits the data 
better than the 2nd order polynomial, which in turn fits the data 
better than the linear regression.  However, it is apparent that 
the inherent relationship of the variable is not that of a 
polynomial.  Of course a polynomial with a high enough degree 
will fit the data perfectly, but over-fitting becomes a concern 
with this. 

 

Figure 6: Modeling arthritis drugs versus next year dollar 
cost.  Similar to figure 4 plus 2nd and 3rd order polynomial 
curves shown in blue. 

 
On arthritis drug cost, the polynomial is even less of a decent fit 
for this non-linear relationship.  The curves tend to 
accommodate the few outliers even more.  More specifically, 
2,952 members (2.6%) of the 115,000 take arthritis drugs.  Out 
of those 2,952, only 319 have an arthritis drug cost of greater 
than $500.  It is apparent from the graph that the polynomial 
focuses on less than 10% of the data and is completely 
inaccurate on the 90% of arthritis members with drug costs less 
than $500.  The spline is much more flexible, and is given more 
knots at the lower costs so that all the members can have their 
risk assessed accurately. 
 

3. TRANSFORMATION 
 
Splines are generally good only for small dimensional problems 
as their complexity grows geometrically for each additional 
dimension.  To avoid over-fitting in this high dimensional 
problem, we keep the complexity as low as possible by 
transforming each of the variables individually to its one-
dimensional spline curve.  The end goal is that the new variables 
will perform well in a linear regression.  Therefore, if follows 
intuitively that the best transformation would likely create a new 
variable with a linear relationship to the dependent variable.  
Using the splines for hypertension drug cost and arthritis drug 
cost, we create new variables called “Hypertension Spline 
Estimate” and “Arthritis Spline Estimate.” 
 

 
Figure 7: Transformed hypertension drug variable versus 
next year dollar cost.  The new variable is linear with 
respect to the next year cost. 

 
Graphing the transformed variable against the dependent 
variable, it is clear that the new relationship is now linear, as the 
grouped means match up very well with the regression line.  
The correlation of the original hypertension drug cost variable 
to the dependent variable is 0.1603.  The correlation of the new 
variable to the dependent variable is 0.1758.  
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While this improvement is only 10%, a more substantial 
improvement can be observed in the arthritis drug cost 
transformation, as that variable is much more non-linear to 
begin with. 

 

 
Figure 8: Transformed arthritis drug variable versus next 
year dollar cost.  The new variable is linear with respect 
to the next year cost. 

 
The spline fit is not perfect here, and could have benefited from 
more knot placement on the low end.  Nevertheless, the fit is 
still “good” as the regression line passes through or is close to 
all the grouped means.  The correlation of the original arthritis 
drug cost variable to the dependent variable is only 0.0847.  The 
correlation of the new spline estimate variable to the dependent 
variable 0.1142, an increase of 35%. 
The transformation is applied to all 21 independent variables, 
and the 7 variables most improved in correlation are recorded in 
the table 1. 

 
Table 1: Improvements in correlation between original 
and transformed predictors to the dependent variable. 

ETG Original 
Correlation 

Spline 
transformed 
correlation 

Percent 
Increase 

Arthritis .0847 .1142 35% 

CNS .0658 .0881 34% 

Degenerative .1019 .1425 40% 

Renal Failure .1870 .2547 36% 

Skin Inflammation .0449 .0590 31% 

Tonsillitis .0166 .0217 31% 

Trauma .0440 .0616 40% 
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The average percent increase in correlation of all 21 variables is 
22%.  The range of improvement is from 5% to 40% as the most 
non-linear variables are going to be altered more drastically in 
the transformation than will the variables with a fairly linear 
relationship to begin with.  

 

4. RESULTS 
 
It is known that the improvement of correlation of individual 
variables does not necessarily improve the accuracy of the 
aggregate model, so it is necessary to combine the transformed 
variables into a model and evaluate the change in accuracy.  
Five models were calculated and evaluated for comparison:  
 

1) Linear regression on the original variables. 
2) 2nd degree polynomial regression on the original 

variables. 
3) 3rd degree polynomial regression on the original 

variables. 
4) Linear regression on binary versions of the original 

variables. 
5) Linear regression on the new variables created from 

applying the spline. 
 
The linear regression on the original variables is important to 
include, because it serves as the baseline.  It allows us to see the 
results of a straight linear model with no transformations. 
The second and third models are polynomial regression models, 
which give an idea of how a simple non-linear model performs 
in comparison with the spline transformation model.  It also 
gives an idea of how quickly over-fitting can occur, even with a 
data set this large. 
The reason for including the fourth model is that it is common 
within the medical industry to use binary versions of ETGs for 
predictive models.  For example, diabetes charge greater than 
zero indicates that the member has diabetes, and would be 
assigned a value of 1.  A model with the binary variables gives 
an idea of what is the industry standard that we are comparing 
to. 
In the evaluation of these 5 models, we use two statistics: 

1) R-Squared 
2) Sensitivity of the top 2% of predictions (where PPV = 

2% as well).  The “2%” evaluation is not chosen 
arbitrarily, as it seems to be the industry consensus on 
the number of members in a health plan that can be 
focused on for preventative measures. 

 
Table 2: Training Results 

 R-Squared Sensitivity 

Regression 0.1463 23.86

2nd Degree 0.1631 24.64

3rd Degree 0.1795 25.29

Binary 0.1498 23.01

Spline 0.1860 26.40
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Table 3: Validation Results 

 R-Squared Sensitivity 

Regression 0.1341 23.73 

2nd Degree 0.1470 25.03 

3rd Degree 0.1440 25.16 

Binary 0.1500 21.63 

Spline 0.1838 26.34 

 
 
Table 4: Differential between training and validation 
results 

 Out of Sample R-Squared Delta 

Regression -8%

2nd Degree -10%

3rd Degree -20%

Binary 0%

Spline -1%

 
Table 5: Improvement made by using the spline 
variables over each of the other techniques (based on 
validation results). 

Percent Improved R-Squared Sensitivity 

Regression 37% 11%

2nd Degree 25% 5%

3rd Degree 28% 5%

Binary 23% 22%
 

 
The tables are based on a 67-33 split of the data set of 115,018 
members.  76,679 members were placed in the training set and 
38,339 members were placed in the validation set so that the 
training and validation results could be compared. 
On the validation set, there was a small improvement from the 
linear model to the 2nd degree polynomial, but the R-Squared 
value started to decline when the 3rd degree polynomial was 
applied.  It should also be noted that percent decline between the 
training and validation R-Squared increased dramatically for the 
3rd degree polynomial, indicating that the complexity of the 
model was over-fitting on even this large data set.  The accuracy 
on the linear regression dropped 8% from .1463 to .1341, a 
notable amount, but likely not enough to characterize the model 
as “over-fit”.  The accuracy on the 3rd degree polynomial 
dropped 20% from the training set to the validation set.  The 2nd 
degree polynomial showed a 10% decline in R-Squared as it 

was applied on the validation sample, but yielded the best 
overall R-Squared value of the polynomial models. 
The model using the spline transformed variables performed the 
best in every area.  Although a simple linear regression was 
used as the final model, the variables had under-gone a low-
complexity transformation that customized them to work well in 
a linear model.   
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