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a b s t r a c t

Employing detrended fluctuation analysis (DFA) and detrended cross-correlations analysis
(DCCA), we analyze auto-correlations in the absolute returns for each of 30 Dow Jones
Industrial Average (DJIA) constituents, Si, and cross-correlations in the absolute returns
between the DJIA and each Si. We find that each DJIA member follows the DJIA in absolute
returns, since the DCCA curve for each pair (Si,DJIAi) exhibits strong cross-correlations,
with average DCCA exponent ⟨λ⟩ = 1.03±0.04. This value for ⟨λ⟩ implies that the power-
law cross-correlations are of the 1/f functional form. For the financial firms comprising the
DJIA, we also find that the DFA andDCCA exponents controlling the duration of firm risk are
somewhat larger than the corresponding values for the rest of the US financial industry.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Investing in a variety of different assets (‘‘portfolio diversification’’) is a technique used in finance to reduce investment
risk. Diversification lowers risk even if the returns of a portfolio’s assets are positively – but not perfectly – correlated.When
the returns of the assets are positively correlated, the diversified portfolio will be less risky than the weighted average risk
of its constituent assets.

The theory of portfolio diversification assumes that there is no strong positive relationship among the returns of different
assets. Here we test this assumption by calculating the cross-correlations between different assets, quantified by stock
returns. Studying cross-correlations enables us to base our prediction of future outcomes on current information. In finance,
we base our risk estimate on cross correlation matrices derived from asset and investment portfolios [1,2]. Many methods
have been used to investigate cross-correlations between pairs of simultaneously recorded time series [3,4] or among a large
number of simultaneously recorded time series [5,1,2,6].

To test how diversification can be helpful, we will estimate the cross-correlations among different assets [7,8]. Note that
the greater the cross-correlations among a portfolio’s assets, the smaller will be the benefit of cross-correlations. Cross-
correlations exist throughout the entire market when either
(a) the cross-correlations are weak and exist only for zero lag (or for a small number of lags), or
(b) the cross-correlations are strong and long-range.

In case (a), once a single market becomes more volatile and the volatility is transmitted across different markets, the risk
decays quickly. In case (b), cross-correlations are strong and the risk transferred from abroad decays slowly. Note that in
case (b) diversification is less helpful because different assets follow each other for a longer time period.
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Ref. [9] reports that, in the case of international stocks, cross-correlations between nine highly developed economies
fluctuate strongly over time, and that fluctuations increased during periods of high market volatility. The finding that there
is a link between zero-lag cross-correlations and market volatility is ‘‘bad news’’ for global money managers who attempt
to reduce risk by diversifying stocks internationally. In order to determine whether the duration of a financial crisis will be
short or long, Ref. [10] recently reported that, for six Latin Americanmarkets, the effects of a financial crisis were short-term,
with each of the six markets returning to a low volatility regime after only two to four months following each crisis.

Ref. [11] report that the autocorrelation functions for Dow Jones and S&P500 absolute returns and their cross-correlation
functions approximately overlap, are non-zero, and exhibit a long-range behavior. Two papers recently analyzed volatility
cross-correlations for both the US market and the international market. Ref. [12] reports long-range cross-correlations
among the 1340 members of the New York Stock Exchange (NYSE) Composite, analyzing 1340 time series with 2172 daily
records during the 8.7-year period between the 2nd January 2001 to the 24th August 2009. Ref. [13] studies 48world indices,
one for each of 48 countries, finds long-range power-law cross correlations in the absolute values of returns that quantify
risk, and finds that the correlations decay much more slowly than cross correlations between the returns. Both papers
[12,13] report long-range magnitude cross-correlations in collective modes of financial data using time-lag randommatrix
theory (TLRMT). Because random matrix theory (RMT) is based on cross-correlation coefficients and thus is intended for
stationary signals, the method is not reliable when measuring the power-law exponent precisely. Our goal is to determine
the functional form of the long-range magnitude cross-correlations measuring cross-correlations not at a collective level,
but between pairs of time series, and thus to find whether the exponents characterizing the cross-correlations exhibit
universality or diversity.

2. Methods

Two methods have been proposed for studying long-range auto-correlations and cross-correlations in the presence of
nonstationarity, (i) detrended fluctuation analysis (DFA) [14] and (ii) detrended cross-correlation analysis (DCCA) [3,15]. To
understand the DFA method, we select a time series x(i) where i = 1, . . . , Lmax (Lmax being the length of the time series),
we integrate the signal x(i), and we obtain y(k) =


x(i) − ⟨x⟩, where ⟨x⟩ is the mean. We then divide the integrated signal

y(k) into boxes of equal size n. Into each box of size n, we fit y(k), using a polynomial function of order l, which represents
the trend in that particular box. The integrated signal y(k) is then detrended by subtracting the local trend yn(k) in each box
of size n,

F(n) =


1

Lmax


[y(k) − yn(k)]2. (1)

When power-law auto-correlations are present, the DFA method, represented by F(n) ∝ nα , and the power spectrum
S(f ) ∝ f −β are related when the exponents are related as [16]

α =
1 + β

2
. (2)

Thus α = 1 corresponds to 1/f noise.
Ref. [3] analyzes the covariance between two time series in both the classical and detrended approaches. It shows

that, for two stationary processes yk and y′

k where the cross-correlation function scales as C(n) ∝ n−γX , the expected
covariance between two random walks of n steps scales as ⟨(Rn − ⟨Rn⟩)(R′

n − ⟨R′
n⟩)⟩ ∝ nλ, where λ = 1 − 0.5γX , and

Rn =
n

k=1 yk. Note that if each series is power-law auto-correlated, but there are no cross-correlations between the series
(⟨(yk − yk)(y′

l − y′

l)⟩ = 0) for any choice of l and k, then ⟨(Rn − ⟨Rn⟩)(R′
n − ⟨R′

n⟩)⟩ = 0. In probability theory and statistics,
covariance is a measure of how much two variables, e.g., X and Y , change together, Cov (X, Y ) = E[(X − ⟨X⟩)(Y − ⟨Y ⟩)].
Covariance is non-zero if errors X − ⟨X⟩ of X follow errors Y − ⟨Y ⟩ calculated for Y . If the errors do not follow each other,
there are no cross-correlations. In the Appendix we study a special case in which we define ‘‘covariance’’ between squared
errors.

Utilizing the work presented in a seminal paper [3], we quantify the cross-correlations by applying detrended cross-
correlation analysis (DCCA) [3]. We consider two long-range cross-correlated time series {yi} and {y′

i} of equal length N and
compute two integrated signals Rk ≡

k
i=1 yi and R′

k ≡
k

i=1 y
′

i , where k = 1, . . . ,N . We divide the entire time series into
N − n overlapping boxes, each containing n+ 1 values. For both time series, in each box (window) that begins at i and ends
at i + n, we define the ‘‘local trend’’ to be the ordinate of a linear least-squares fit. We define the ‘‘detrended walk’’ to be
the difference between the original walk and the local trend. We next calculate the covariance of the residuals in each box,
f 2DCCA(n, i) ≡ 1/(n− 1)

i+n
k=i(Rk − Rk,i)(R′

k − R′

k,i). We are then able to calculate the detrended covariance by summing over
all overlapping N − n boxes of size n,

F 2
DCCA(n) ≡ 1/(N − n)

N−n
i=1

f 2DCCA(n, i). (3)

If the detrended covariance vs. n is zero, there are no cross-correlations. However, for finite time series due to size effect,
the absence of cross-correlations does not imply that the detrended covariance vs. n is zero, but only that it oscillates around
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Fig. 1. 1/f behavior of cross-correlations between absolute returns of ExxonMobil Corporation andDow Jones Industrial Average (DJIA). (a) Exxon andDJIA
follow each other in absolute returns implying the existence of cross-correlations. (b) Detrended fluctuation analysis DFA and detrended cross-correlations
analysis DCCA calculated between the absolute values of returns of Exxon Mobil Corporation and Dow Jones Industrial Average. Each DFA curve and the
DCCA curve follows a power-law regime. We show the fit in the asymptotic regime. The DCCA exponent λ = 0.99 ± 0.02 implies power-law cross-
correlations of the 1/f functional form.

zero. We then have either no cross-correlations or only short-range cross-correlations between {yi} and {y′

i}. In the special
case when each series is power-law correlated and characterized by Hurst exponents H and H ′, generated by the ARFIMA
process with a common error term, Ref. [3] numerically demonstrates and Ref. [17] derives that the root mean square (rms)
of the detrended covariance vs. n follows a power law, FDCCA(n) ∝ nλ, where the exponent λ is equal to the average of the
Hurst exponents, λ ≈ (H + H ′)/2.

Ref. [18] extends the DCCA by introducing the possibility ofmultifractality in time series [19]. Recently a new (detrended)
cross-correlation coefficient has been proposed to quantify the presence of cross-correlations in a time series [20,21].
Extensions of DCCA based on a moving average [22] have also been proposed [23].

3. Analysis

Fig. 1(a) shows how absolute returns follow each other, especially during large price fluctuations, in the Exxon Mobil
Corporation and the Dow Jones Industrial Average (DJIA) during the 21-year period from January 1989 to June 2011. Fig. 1(b)
shows the DFA curves calculated for the absolute values of price returns. The DFA curves for ExxonMobil andDJIA are known
to exhibit strong power-law behavior [24], with DFA exponents 0.94 ± 0.01 and 1.02 ± 0.02, respectively. To estimate the
level of co-movements in the volatility between these two time series, we estimate the cross-correlation level by employing
DCCA. Fig. 1 shows the DCCA curve calculated between the absolute values of returns of the Exxon Mobil Corporation and
the Dow Jones Industrial Average. The curve exhibits obvious power-law behaviorwith the DCCA exponent λ = 0.99±0.02,
implying power-law cross-correlations, once again of the 1/f functional form.

Fig. 2 shows the auto-correlation properties of the absolute returns for each constituent of the DJIA. Fig. 2(a) shows that
all DFA curves exhibit strong power-law behavior [24], in which the DFA exponent in the tails ranges between α = 0.89 for
Boeing and Merck & Company and α = 1.15 for Bank of America (BoA). Fig. 2(b) shows the DFA exponent α for each DJIA
constituent with the average ⟨α⟩ = 0.97 ± 0.03. This result (α ≈ 1) supports the contention that the 1/f functional form
is present in the auto-correlations of the absolute returns.
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Fig. 2. Detrended fluctuation analysis DFA of absolute values of returns of 30 constituents of the Dow Jones Industrial Average. Each DFA curve follows a
power law. The DFA exponent α = 0.97 ± 0.06 implies power-law auto-correlations of the 1/f functional form.

Fig. 3. Detrended cross-correlations analysis DCCA calculated between absolute values of returns calculated between Dow Jones Industrial Average (DJIA)
and each of 30 constituents of the DJIA. Each DCCA curve follows a power law. The DCCA exponent λ = 1.03 ± 0.04 implies power-law cross-correlations
of the 1/f functional form.

Note that the largest DFA exponents α in Fig. 2(b) and in the table are frequently associated with financial institutions.
The largest α corresponds to the Bank of America (BoA), American Express (AXP), and JP Morgan Chase. This result implies
that, when auto-correlations are considered, financial institutions behave differently from all other firms. This result we
confirm by analyzing several other financial institutions, including Goldman Sachs and Deutsche Bank, for which we find
DFAexponents 1.07±0.03 and1.1±0.02 andDCCAexponents 1.12±0.02 and1.13±0.02, respectively. It is not uncommon
that financial firms are treated differently from the rest of industry. When one evaluates bankruptcy risk, financial firms are
assessed using models that differ from those used for manufacturing or service firms. Analyzing bankruptcy data, Ref. [25]
shows the Zipf scaling for large debt-to-asset ratios and finds that the Zipf plot can be approximated by two power-law
regimes, ζ = 0.57 and ζ = 1.57, in which the larger Zipf exponent corresponds primarily to financial firms. Note that
the cumulative distribution function (cdf) is a simple transformation of the Zipf rank-frequency relation, where the cdf ζ ′

exponent and the Zipf exponent ζ are related as ζ = 1/ζ [26]. Thus when financial firms go bankrupt, Ref. [25] shows that
they strongly tend to be more indebted than other kinds of firms experiencing bankruptcy. We find that the DFA exponent
controlling the duration of the firm risk also exhibits behavior for the financial firms that differs from that of the rest of
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Table 1
The DFA and DCCA exponents for the DJIA members.

Firm DFA α DCCA λ Firm DFA α DCCA λ

ALCOA 1.04 ± 0.02 1.04 ± 0.01 JP Morgan Chase 1.07 ± 0.02 1.10 ± 0.02
AXP 1.08 ± 0.02 1.07 ± 0.02
Boeing 0.89 ± 0.02 1.02 ± 0.01 Coca-cola 0.94 ± 0.02 1.03 ± 0.01
BoA 1.15 ± 0.02 1.13 ± 0.04 McDonald’s 0.92 ± 0.02 1.02 ± 0.01
Caterpillar 0.95 ± 0.02 1.0 ± 0.01 3M 0.92 ± 0.02 1.01 ± 0.01
Chevron 0.96 ± 0.02 0.99 ± 0.03 Merck 0.89 ± 0.01 1.01 ± 0.01
Cisco 0.93 ± 0.02 1.03 ± 0.02 Microsoft 0.94 ± 0.02 1.02 ± 0.01
duPont 0.99 ± 0.02 1.05 ± 0.01 Pfizer 0.92 ± 0.01 1.01 ± 0.01
Disney 0.98 ± 0.02 1.04 ± 0.01 Procter & Gamble 0.90 ± 0.01 1.00 ± 0.01
General electric 1.06 ± 0.02 1.05 ± 0.02 AT&T 1.00 ± 0.02 1.11 ± 0.01
Home depot 0.99 ± 0.02 1.05 ± 0.02 The travelers 1.02 ± 0.02 1.07 ± 0.03
Hewlett-Packard 0.92 ± 0.02 1.04 ± 0.02 United technologies 0.95 ± 0.02 1.01 ± 0.01
IBM 0.94 ± 0.02 1.02 ± 0.01 Verizon 0.99 ± 0.02 1.08 ± 0.01
Intel 0.95 ± 0.02 1.06 ± 0.01 Wal-mart stores 0.95 ± 0.02 1.03 ± 0.02
Johnson 0.89 ± 0.01 1.0 ± 0.01 Exxon mobil 0.94 ± 0.01 0.99 ± 0.02

the industry. Ref. [27] recently reported that the DFA exponent α obtained for price volatility increases with firm lifetime,
suggesting that longer-lasting stocks tend to have a more persistent price movement (see Table 1).

Fig. 3 shows the cross-correlation levels in the absolute returns between the DJIA and each of 30 constituents, Si, of the
DJIA. Because of the high non-stationarity, we study the cross-correlations using DCCA [3] and find that each DJIA member
follows the DJIA in absolute returns, i.e., the DCCA curve for each pair (Si,DJAIi) exhibits strong cross-correlations in which
the DCCA exponent λ ranges between 0.99 ± 0.02 for Chevron Corporation and Exxon Mobil Corporation to 1.13 for the
Bank of America. Fig. 3(b) shows the DCCA exponent λ for each pair (Si,DJAIi) with an average ⟨λ⟩ = 1.03± 0.04, implying
that the power-law cross-correlations are of the 1/f functional form.

4. Conclusion

We have tested the limited effectiveness of diversification in reducing investment risk in the US market. We show
that each of the 30 Dow Jones Industrial Average (DJIA) constituents, Si, cross-correlates strongly with the DJIA when we
analyze the cross-correlations in absolute returns. In particular, we find that the power-law cross-correlations are of the 1/f
functional form, which is the strongest and longest-living correlation of all power-law functional forms. For the financial
firms comprising the DJIA, we also find that the DFA and DCCA exponents controlling the duration of firm risk are somewhat
larger than the corresponding values for non-financial US firms. Recent papers [28,29] have reported that interdependent
networks, such as the financial systems of different countries, exhibit a lower failure-threshold value than isolated networks,
i.e., system failure will occur at a lower damage level. Thus increasing the level of integration among the financial systems
of different countries around the world may elicit power-law cross-correlations of the 1/f functional form at a world-wide
level as well.
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Appendix

In contrast to Eq. (3), we here define covariance not between two randomwalks but between the squares of two random
walks. We analyze the implications of this assumption. We consider two stationary processes yk and y′

k, and we calculate

⟨(Rn − ⟨Rn⟩)
2(R′

n − ⟨R′

n⟩)
2
⟩ =


k

yk

2 
k

y′

k

2
, (4)

where for simplicity we assume that ⟨y⟩ = ⟨y′
⟩ = 0

⟨(Rn − ⟨Rn⟩)
2(R′

n − ⟨R′

n⟩)
2
⟩ (5)

= ⟨(y1 + y2 + · · · + yn)2(y′

1 + y′

2 + · · · + y′

n)
2
⟩ (6)

= ⟨[(y21 + y22 + · · · + y2n) + 2(y1y2 + y2y3 + yn−1yn) (7)

+ 2(y1y3 + y2y4 + yn−2yn) + · · · 2yn−1yn] (8)

× [(y′2
1 + y′2

2 + · · · + y′2
n ) + 2(y′

1y
′

2 + y′

2y
′

3 + y′

n−1y
′

n) (9)

+ 2(y′

1y
′

3 + y′

2y
′

4 + y′

n−2y
′

n) + · · · 2y′

n−1y
′

n]⟩. (10)
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We assume that yk and y′

k are independent and that each series is power-law auto-correlated, where C(k) ∝ Ck−γ and
C ′(k) ∝ C ′k−γ ′

, but there are no cross-correlations between the series, i.e.,

⟨(Rn − ⟨Rn⟩)
2(R′

n − ⟨R′

n⟩)
2
⟩ (11)

= ⟨(Rn − ⟨Rn⟩)
2
⟩⟨(R′

n − ⟨R′

n⟩)
2
⟩ (12)

=


nVar(Y ) + 2

n−1
k=1

(n − k)C(k)


nVar(Y ′) + 2

n−1
k=1

(n − k)C ′(k)


(13)

= n2Var(Y )Var(Y ′) + 2nVar(Y )

n−1
k=1

(n − k)C ′(k) + 2nVar(Y ′)

n−1
k=1

(n − k)C(k) (14)

+ 4
n−1
k=1

n−1
k′=1

(n − k)(n − k′)C(k)C ′(k′) (15)

≈ n2Var(Y )Var(Y ′) + 2nVar(Y )n2−γ ′

C1 + 2nVar(Y ′)n2−γ C2 (16)

+ 4
n−1
k=1

(n − k)C(k)
n−1
k′=1

(n − k′)C ′(k′). (17)

In this expression we approximate the sums by the corresponding integrals [3],

⟨(Rn − ⟨Rn⟩)
2(R′

n − ⟨R′

n⟩)
2
⟩ (18)

≈ n2Var(Y )Var(Y ′) + 2nVar(Y )n2−γ ′

C1 + 2nVar(Y ′)n2−γ C2 (19)

+ 4n2−γ ′

n2−γ (20)

= n2Var(Y )Var(Y ′) + 2Var(Y )n3−γ ′

C1 + 2Var(Y ′)n3−γ C2 (21)

+ 4n4−γ ′
−γ (22)

Asymptotically, the last term dominates

⟨(Rn − ⟨Rn⟩)
2(R′

n − ⟨R′

n⟩)
2
⟩4n4−γ ′

−γ
∝ n4λ, (23)

where γ and the DFA exponent are related as γ = 2(1 − α). We obtain

λ = 1 −
γ ′

+ γ

4
=

α′
+ α

2
. (24)

Thus, if we analyze the correlations not between Rn and R′
n but between R2

n and R′2
n , we find that the power law exists even

if there are no cross-correlations between series y and yk. As stated above, (a) if each series is power-law auto-correlated
characterized by Hurst exponents H and H ′, generated by ARFIMA process with a common error term, FDCCA(n) ∝ nλ, where
λ ≈ (H + H ′)/2 [3,17], and (b) if Y and Y ′ are power-law auto-correlated with DFA exponents α and α′, but not cross-
correlated, FDCCA(n) fluctuates around zero, which is a sign that there are no cross-correlations. For both (a) and (b), Eq. (23),
defined with the expectation between R2

n and R′2
n , gives the same result.
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