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. ABSTRACT

The effects of 1/f frequency noise on self-heterodyne detection are described and the results are
applied to the problem of laser-diode-linewidth measurement.  Laser diode linewidths determined by
self-heterodyne methods are not adequate predictors of coherent communications system performance
because these measurements often include significant broaderung due to 1/f frequency noise. In this
report, the autocorrelation functior: and power spectrum of the detected self-heterodyne photocurrent are
developed in terms of an arbitrary frequency noise spectrum and then evaluated for both the white and
the 1/f components of the frequency noise. From numerical analysis, the power spectrum resulting from
the 1/f frequency noise is shown to be approximately Gaussian and an empirical expression is given for
its Immewidth. These results are applied to the problem of self-heterodyne linewidth measurements for
voherent optical communications, and the amount of broadening due to 1/1 frequency noise is predicted.
Two methods are then provided for estimating the portion of the measured self-heterody ne linewidth due
to the white component of the frequency noise and the portion due to 1/f frequency noise.
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1. INTRODUCTION

Laser diode linewidths measured using delayed self-heterodyne detection often include significant
broadening due to 1/f frequency noise. This complicates the evaluation of lasers for use in coherent
communications systems because the linewidths determined by self-heterodyne methods will not be
adequate predictors of performance. Coherent system performance is strongly dependent on the Lorentzian
component of the laser lineshape resulting from white frequency noise, and is much less dependent on
the component resulting from 1/f frequency noise. Most treatments of delayed self-heterodyne detection
have assumed laser phase noise solely of quantum origin leading to a Lorentzian lineshape [1-4]. Re-
cently. a few investigators have noted the broadening effect of 1/f frequency noise on the laser diode
lineshape as measured by the self-heterodyne technique [5-8]. The performance of high-data-rate coher-
ent communication systems is limited mostly by the white component of the frequency noise because the
phase or frequency fluctuaiions resulting from l/f frequency noise are very small over a symbol interval
{8]. The 1/f frequency noise may impose a requirement for frequency tracking to keep the center
frequency from drifting out of the receiver front-end bandwidth; however, this requirement is met fairly
easily with automatic frequency tracking circuits [9].

This report describes the effecte of 1/f frequency noise on self-heterodyne detection by developing
the autocorrelation function and power spectrum of the photocurrent in terms of an arbitrary frequency
noise spectrum. and then evaluating them for both the white and the 1/f components of the frequency
noise. These results arc then applied to the problem of self-heterodyne linewidth measurement for high-
data-rate heterodyne communications. Long delays are required for these measurements to provide
adequate resolution: however, these delays result in considerable broadening of the sclf-heterodyne
lineshape due o0 I/f. To overcome this, two methods are presented for estimating the white component of
the frequency noise from the measured lineshape.




2. PHASE NOISE MODEL

The starting point of the analysis presented here is based on previous work which treated only white
frequency noise, so some details are omitted [1]. The optical field from a single longitudinal mode
semiconductor laser can be modeled as a quasi-monochromatic field with random phase fluctuations
leading to broadening of the spectral line:

E()=E,exp jo,r+6()] . ()

The analysis presented here assumes that the amplitude of the optical field is constant. The phase noise
spectrum § A is the power spectrum of the phase fluctuations, and the frequency noise spectrum § &’ is the
power spectrum of the frequency fluctuations. The mean square phase fluctuation

(40 ()= ({80t + T) = ()T7) (2)

is related to the frequency noise spectrum by [10]

2 ) d
(A¢ (T))== .Lo smz(%z)Sé(w);—)% ' (3)

where < > denetes a time average. The two-sided frequency noise spectrum can be modeled at frequen-
cies below the relaxation oscillation frequency. as power-dependent white noise and power-independent
1/f noise

Sé(w)=5(,+i£)—l . 4)
Many treatments include only the white noise, even though a wide variety of semiconductor lasers have
been shown to exhibit substantial levels of 1/f noise in addition to the white noise [11-17}. For all
equations in this paper, S and & are expressed in units of (rad/s)*/Hz and (rad/s)’/Hz, respectively. S,
and & are usually measured single-sided in units of Hz%/Hz and Hz3/Hz, so vaiues given here are in these
units. (To convert from measured values to the units used in the cquations, the conversion factors are
w)*/2 and (27r)3/2 for So and £, respectively.)

The actual frequency noise spectrum also has a resonance peak at the relaxation oscillation fre-
quency and drops off above that frequency. The resonance frequency is typically well above 2 GHz, so
from (3) it is clear that neglecting these features only affects <AP¥(r)> for 7 in the vicinity of the
reciprocal of the relaxation oscillation frequency and smaller. The effects of the relaxation oscillation on
the frequency noise spectrum may be important for systems where the symbol rate approaches the
relaxation oscillation frequency; however, these effects are neglecied in this report.

The component of the phase jitter Ag(7) due to the white frequency noise is commonly assumed to
be a zero mean, stationary, Gaussian random process. The component of the phase jitter due to the 1/f

frequency noise is also stationary and exhibits Gaussian statistics even though the phase and frequency
noise ¢(7) and ¢(7) due to the 1/f frequency noise are not stationary [17]. Under these conditions

(explE£iAH( r>1>=exp[--;-<A¢2<r»] . )
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Figure 2. Field spectrum for a laser with a 7-MHz natural inewidth and k = 2 X 10> Hz2. The
lower curve 1s the result obtained using a Gaussian approxmation for the field spectrum due to
1if frequency noise.




By Fourier transforming the field correlation function <E*(t) E(tr + 7)>, where * indicates the
complex conjugate, the laser field spectrum is found. The resulting spectrum is the convolution of the
Lorentzian spectrum assuciated with the white frequency noise and the approximately Gaussian spectrum
arising from the 1/f noise. The result of convolving a Lorentzian spectrum and a Gaussian spectrum is
known as a Veigt spectrum. The Voigt profile is used extensively in investigations of radiative transfer
in the upper atmosphere. In this area of study, the Voigt profile results from independent Lorentzian and
Doppler broadening (Doppler broadening leads to a Gaussian lineshape). The Voigt function is not
available mn ap anaiytic form; however. many useful approximations are available. The accuracy of
using a Voigt profile to model tiie laser diode lineshape is limited by the approximations used in
modeling the spectrum due to 1/f frequency noise with a Gaussian.

The linewidth of the Lorentzian part of the lineshape taken by itself is S“/.?Tr Hz FWHM (full width
half maximum). and the linewidth of the approximately Gaussian part is roughly {4 In(2) (k2%) (1 +
ln(T“m Vk/27r’)]}' 2 Hz FWHM when observed for Tnhs seconds and Tom k127 >> 1 [17] [k is the level
of the 1/f noise as in (4)]. Figure | shows the lineshape due to the 1/f part of the frequency noise
compared with the Gaussian approximation which is only good near line center; however, about 90 per-
cent of the power i the lineshape is contained within the region where the error in the Gaussian
approximation is less than 10 percent. Hence. the lineshape which results from convolving the Gaussian
approaximation with a Lorentzian differs very little from the lineshape calculated without the approxima-
tion. The lower curve 1n Figure 2 1s the lineshape due to combined white and 1/f frequency noise
components and using the Gaussian approximation, and the upper curve is the same field spectrum
computed without the approximation. As can be seen, the approximation is a valid approach to comput-
ing the complete lineshape except in unusual cases where the 1/f noise dominates a large part of the
frequency noise spectrum. Thus, the complete laser diode lineshape is well approximated by a Voigt
profile for common levels of 1/f noise.




3. DETECTED FIELD MODEL AND PHOTOCURRENT
AUTCCORRELATION FUNCTION

Following the development of [1], the detected field for the delayed self-heterodyne linewidth
measurement setup as shown in Figure 3 is the sum of a laser field and a time-delayed and frequency-
shifted image of itself,

= E(t)+ aE(t + T,)exp(j2r) 6)

and « is a real factor which accounts for the amplitude ratio between the two fields. The time delay
between the two fields is 7 . and (2 is the mean frequency difference between the two fields. Assuming
stationary fields, the autocorxelatlon of the photocurrent depends only on the intensity correlation func-
tion of the detected total field G, 2z 7)

Ri(D)=enGEH 06+ PG (D) (7)

where ¢ is the electronic charge, 7 is the detector sensitivity, o(¢) is the Dirac delta function. and the
optical intensity correlation function is

Gg’(r) =(Ep(OEFOEr 1+ DEF 1+ 1) . (8)

The first term 1n (7) 1s the shot noise associated with the dc component of the photocurrent.
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4. AUTOCORRELATION FUNCTION AND SPECTRUM
FOR WHITE FREQUENCY NOISE

The autocorrelation function is found by substituting (6) into (8). This results in 16 terms, 10 of
which average out to zero. By using (5). the result as given in [1] is

2
G(Ezr’(t) = Ej[(l + az) +2a% cos Qrexp(A)]
where
1 9 1
A=—(A¢2(1,,))—(A¢2(r))+;(£\¢'(r—r,,)>+;(A¢)2(r+r(,)) ) 9)

By substituting (3) mto (9) and combining the tegrals, the intensity correlation function can be written
in terms of the frequency noise spectrum

f

2 S (w)
G‘EZT’(Z)=E31'(1+(X2) +20° cos 27 exp 0

4o 20T . 2 OT, l
-;Lw sin ( > )sm ( 5 )———wz de . (10)

Thus agrees with Kikuchi [7]. At this point 1t 1s useful to observe that the second term in this autocorrela-
tion 1 simifar to the field correlation for a single laser with the addition of a sine-squared term which acts
as a filter on the frequency noise spectrum. For small delay times, this sine-squared term effectively
filters out most of the 1/f component of the frequency noise spectrum.,

For the white part of the frequency noise spectrum, the integral in (10) is easily evaluated and yields

-

A ) =S |t forlfl<t
G;}T’(r)zE(‘fl:(l+a“) +20!’COSQTCX[)( ol I ”H forS, =S, . (11)

_So To for |T| > T

By using the Wiener-Khintchie theorem, the power spectral density resulting from the white component
is the Fourier transform of (11) [1.2]

28,
(S, +(w-Q)*

2
S(w)= Lj[(l + az) S(w)+20° exp(—S(,ﬂ:(,)5((0—!2)+2oz2 X

So .
X l—cxp(—S,,r(,)[cos(w—.Q)r,,+ £ sin(w - 2)7, . (12)
w-1 i
In the hmt of large delay times the component of the spectrum due to the white frequency noise
becomes exactly Lorentzian, with width equal to twice the individual laser linewidth. For delay times
which are comparable to or shorter than the coherence time, the quasi-Lorentzian part is broadened and




scalloped and power is shifted into the delta function at the modulation frequency. If the delay is much
shorter than the coherence time, the spectrum consists solely of delta functions at the modulation fre-
quency and at dc.

10




5. AUTOCORRELATION FUNCTION AND SPECTRUM
FOR 1/f FREQUENCY NOISE

For the 1/f part of the frequency noise spectrum evaluation of the integral in (16) requires use of the
identity

sin ax _ J'a/ 2
-(a/2)

exp(j2mxt)dt (13)
X

yielding [18]

2 i 2
G};?(r):Eﬁ{(Haz) +20° cosQrI:(f+To) Ma2,) 12z

A

~K(T-1,)2 )27 g2 2
X(IT'TOD (t-7,)° 27 St T()Lrnln:l} forSé =L . 14)

||

Figure 4 is a plot of the bracketed expression in (14) for A = 3 X 10" HZ?, showing the dependence of
the autocorrelation, and thus the frequency spectrum, on the delay time. For times much greater than the
delay time, the slope of the log of the autocorrelation as plotted in Figure 4 is —/\'T(;?/TT.

1437914
10 SLOPE = ~0.19
| DELAY =(s
= 102 ()_5
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10" 108 107 10%  10° 104 10
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Figure 4. Autocorrelation function for 1/f noise only; k = 3 X 107 H=".

The power spectrum for the 1/f component has been obtained by fast Fourier transforming the
autocorrelation function. The result is shown in Figure 5 for several delay times and & = 2 X 10'* HZ>.
(Note that this result neglects the dc component and the shot noise.)

The linewidth of the self-heterodyne spectrum due to 1/f noise alone is shown in Figure 6 as a
function of the delay for several reasonable values of £.
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FigureS. Normalzed self-heterodyne lineshape due to 1/f alone for k = 2 X 10'* H=* and
delay times = 0.1.05. 1. and 5 ps.
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For the extreme case of short delays such that /\'T(;?/’FT << 1, the autocorrelation function is composed
of two parts: a narrow spike and a dc component. Figure 7 shows the autocorrelation for cases such that
kroz/m' is equal to 107! and 102 The appearance of the autocorrelation is markedly different from Fig-
ure 4 because of the difference in the delay and the lincar scaling. The narrow spike produces a broad
base in the power spectrum. The dc component corresponds to a narrow spike in the power spectrum at
the modulation frequency and, as A~'/ 7 becomes much less than 1, the power is shifted completely into
the spike (which becomes a delta funcnon in the limit of smal} k*'/r)

10 T T T T | T
- T, -
09 |- -
-§(70)"’=oo1
0.8 |- -
Tk ]
T o7 -
i K i
#(3)2 =041
06 |- _
05 ! ! ! ! ] ! L
-050 -0.25 -0 -025 -050
7(s)

- ~ . B . 3 k3PS
Figure 7. Awocorrelation funciion tor Lif frequency noise only (h =2 X | 0’ H= for
both curves. = = 6 4 ns for the upper curve and 20 ns for the lower curve).

The contribution of the I/f laser frequency noise to the laser field spectrum is approximately
Gaussian, so it was expected that the contribution to the self-heterodyne spectrum would also be approxi-
mately Gaussian. Figure 8 shows the 1/f lineshape and, for comparison, a Gaussian and Lorentzian with
the sarne width at half maximum. The [/f lineshape is very close to the Gaussian near the center of the
line, but is much stronger than the Gaussian farther away from the line center. This lineshape does not
drop off as fast as a Gaussian, but it has much less power in the wings than a Lorentzian. The Gaussian
component of the lincshape has nearly the same lineshape and V2 times the width of the field spectrum
of the individual laser for cases where krj/w >> 1.

A Gaussian approximation for the autocorrelation was derived empirically using (14). For
i
krela >> 1,

. -
’(1’)?— ,{(l+a2) +20a° cos 27 exp —rz-}\— 4.3+2.llni"—‘ﬂ'—— forS,=— . (15
' T T
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Figure 8. Normalized self-heterodyne lineshape due to 1if alone compared with

Lorentzian and Gaussian curves with the same 3-dB width (shown for comparison)
3 b

(k=2 X 10" H=", delay = I ps)

The power spectral density resulting from this approximation 1s also Gaussian. The linewidth predicted
from this approximation is

rma( . a3g2h)
Gy = 2kn [4_3+;nﬁ‘__‘_LJ HzFWHM . (16)
n\ T T

This approximation is plotted in Figure 6 as a solid line. Good accuracy is obtained for large delays. For
fixed delay 7, the Gaussian linewidth is roughly proportional to Vk. This Vk dependence leads to the
V2 relationship between the Gaussian component of the field spectrum and the Gaussian component of
the self-heterodyne lineshape.

Note that the linewidth due to the 1/f component is not independent of the delay even for large
delays. This is due to the very low frequencies present in the 1/f noise. The analysis presented here is
general in that it is valid for any delay. Results of any analysis which assumes mutual incoherence of the
two optical fields (such as {19]) should be used with caution because, of course, the strong low-
frequency components of the 1/f noise are correlated even for very long delays.

14



6. AUTOCORRELATION FUNCTION AND SPECTRUM
FOR COMBINED WHITE AND 1/f FREQUENCY NOISE

For the combined white and 1/f frequency noise actually present in most semiconductor lasers, the
autocorrelation function is simply a combination of the results already given.

2
G;:-zr)(t) = E,‘,‘[(l + az) +20cos (QT)LGJ

where
-S|t for|d< z,}
L=ex
=S, 7, forltz1,]
and
~k(7-7 )3/7,; -A(r-T, )2/77r ke3/n 2 k
G=(t+1,) oI r-1,) A AR AL forS$=Sn+|E| .U

The power spectral density for the combined white and 1/f frequency noise can be evaluated by finding
the FFT of (17). Figures 9 and 10 are plots of the linewidth which would be observed using seif-
heterodyne detection for lasers with natural lincwidths of 10 and 2 MHy. respectively. The component
of the linewidth due to the 1/f frequency noise by itself was shown in Figure 6 for the same delays and &
values used here.

The linewidth due to combined white and 1/{ frequency noise can be approximated for long delay
tumes using the Gaussian approximation given earlier. The relationship between the complete Voigt
lineshape and the Gaussian and Lorentzian lineshapes is approximated by the expression

_1 [Py 2 2
oy = 510692 @ +0.86639 of +4 o (18)

where o, & and a, are the Voigt, Gaussian, and Lorentzian linewidths, respectively. If the 1/f line-
shape were exactly Gaussian, the error in (18) would be less than about 0.01 percent [20]. The line-
widths predicted using these approaimations are plotted as solid lines in Figures 9 and 10. The error seen
in this approximation is due to the slightly non-Gaussian lineshape resulting from the 1/f component of
the frequency noise.

15




LINEWIDTH (MHz)

143791 9

40 Ty T T T T T T T T T T
B k=4 x 1012H22
" @ k=107 aE ]
11,,2 '
O k=25x10 Hz
30 -
r ; M i
[T, WS, W, BE, B o s
20 - -
— =
10 ot oveved g veened v 0 vaeenl oo povyeend g et
107 16" 1 10 102 10°

DELAY (ps)

Figure 9. Self-heterodyne linewidth vs delay for Sol27 = 10 MH:.

LINEWIDTH (MHz)

30

n
(=]

-t
o

143791 10
LSRR IR B R I E S S N R 1/ A B N N D B [ S N AR R Y1
B k=d4x10"°H?

" & k=10"H:? 7

O k=25x10""Hz’
L - ] -
sy g e aepynd v gpxptpl ey sapand 0 p o rptiy
107? 10" 1 10 102 10

DELAY (us)

3

Figwe 10 Self-heterodvne linewidth vs delay for Sof2w =2 MH:-.

16




7. EFFECTS OF 1/f ON LINEWIDTH MEASUREMENTS

The broadening of the delayed self-heterodyne lineshape resulting from 1/f frequency noise has
particular significance in the context of linewidth measurements for high-data-rate coherent communica-
tions systems. Since the performance of these systems is largely unaffected by 1/f noise. it is desirable to
know the natural linewidth which would result from the white component of the frequency noise alone.
In general. the linewidths estimated from self-heterodyne measurements are simply one-half of the
FWHM of the self-heterodyne lineshape. From Figures 9 and 10 it is obvious that this linewidth is often
substantially larger than the Lorentzian or natural component of the linewidth.

As first observed by Kikuchi and Okoshi. the broadening of the self-heterodyne linewidth by 1/f
frequency noise can lead to a residual linewidth at high powers |5-8]. The natural linewidth. as predicted
by the Schawlow-Townes formula with the broadening factors introduced by Henry [21], varies in-
versely with laser output power in the main longitudinal mode. The 1/f frequency noise is normally
constant with power [17]. Thus. 1/f noisc produces a residual linewidth at the high power limit and also
causes a finite intercept when self-heterodyne linewidths are plotted against inverse power. For Fig-
ure 11 the linewidth which would be measured by the self-heterodyne technique with-a 5-ps delay is
plotted for a constant level of 1/f noise (A = 10'2 Hz?) and a varying natural linewidth. This simulates a
plot of linewidth vs inverse power. For small natural linewidths a residual is observed and a line fitted to
all of the data is seen to intercept the dependent axis at 3.0 MHz. The residual linewidth in the limit of
igh power is simply the 1/f self-heterodyne linewidth divided by 2. For the case in Figure 11. the
residual linewidth would be 3.9 MHz.

This procedure was repeated for a range of 1/f noise levels and several different delay times, and the
intercepts which resulted are plotted in Figure 12. The line fits were produced using a range of five
Lorentzian linewidths from 2 to 25 MHz. The intercepts are dependent on the range of points fitted and
so should be seen as approximate values only.

If the 1/f noise level has been measured independently or if an estimate of the level is available, the
Gaussian portion of the self-heterodyne lineshape can be estimated using (16). An estimate of the
Lorentzian component is then easily found using (18) or the other approximations found in {20].

In some circumstances. direct measurement of the natural linewidth may be possible by tailoring the
length of the delay uscd for the self-heterodyne measurement. For instance. if it were known from
independent measurements that A < 2.5 X 10" Hz?, then choosing a delay of 0.3 ws would make the 1/
contribution to the measured linewidth negligible, as can be seen from Figure 6. In this case. the smailest
Lorentzian linewidth which could be measured directly would be about 5 MHz [2]. This approach of
tailoring the delay to reduce effects of 1/f noise has limited value because many semiconductor lasers
have 4 > 10'° Hz® leading to selection of a delay shorter than 0.15 ps. This delay would only allow
direct measurement of Lorentzian linewidths greater than about 10 MHz.

The broadening effect of the 1/f frequency noise is most pronounced near the center of the self-
heterodyne lineshape. It signal and noise levels permit, a more accurate estimate of the Lorentzian part
of the linewidth of the laser diode under test can be obtained from the width 10 or 20 dB down from the
maximum. Figures 13 and 14 show that the linewidths determined from the width 20 dB down are much
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closer to the Lorentzian linew idth. The linewidths were determined from the 3-, 10-. and 20-dB widths of
numerically generated lineshapes and simpiy assuming a Lorentzian lineshape. (The 3-dB linewidth is
the self-heterodyne linewidth divided by 2: the 10-dB linewidth is the self-heterodyne linewidth 10 dB
down divided by 6: the 20-dB linewidth is the self-heterodyne linewidth 20 dB down divided by 2 v99.)

Good estimates of the Lorentzian and Gaussian components can be obtained by fitting a Voigt
profile to the measured self-heterodyne lineshape. Efficient and accurate algorithms are available for
estimating the Voigt lineshape for any combination of Lorentzian and Gaussian contributions [22-26].
Some of the approximations for the Voigt profile also provide derivatives with respect to all of the
parameters allowing application of nonlinear least-squares fitting procedures. These procedures use the
Voigt function and derivatives for each point in the lineshape and iterate until a satisfactory level of
accuracy is obtained.

An alternative method of using the Voigt approximations to estimate the Gaussian and Lorentzian
parts of a mearured self-heterodyne lineshape is given here. This approach requires fewer computations
than the nonlinear least-squares fitting procedures. The Lorentzian component is initially estimated from
the 20-dB linewidth by simply assuming a Lorentzian lineshape. Then, the Gaussian component 15
estimated by using the 3-dB linewidth and (18). Use of this estimate of the Gaussian component allows a
new estimate of the Lorentzian component to be found by using a Voigt approximation and iterating io
find the Lorentzian value required to produce a 20-dB width equal to the measured width. The new
Lorentzian value is then used to refine the estimate of the Gaussian component. and these steps are
repeated until the estimates converge. Convergence is fairly rapid because the 20-dB hnewidth 1s
dominated more by the Lorentzian contribution. while the 3-dB linewidth is strongly affected by the
Gaussian component.

To test its accuracy over a wide range of inputs. this Voigt fitting procedure was applied to self-
heterodyne lineshapes computed using the results presented here (see Figures 15 and 16). The estumates
of the Lorentzian component are very close to the correct value, with a small error appearing for the
2-MHz case where the Gaussian component begins to be much larger than the Lorentzian component.
The Voigt approximation used here was the one found in [25].

This Voigt fitting procedure was also applied to actual self-heterodyne lineshapes. The setup used a
500-m fiber delay line providing 2.5 s of delay. Figure 17 shows a measured lineshape and the Voigt
lineshape resulting from the fit. The laser for this test was a 30-mW Hitachi HL8314E.

Figures 18 and 19 show the results of applying the Voigi fitting procedure to a typical set of
linewidth vs power measurements. A Spectra Diode SDL-5410-C 100-mW laser diode was used for
these tests. The 3- and 20-dB width data used to produce the fits were derived from the lineshape
assuming a Lorentzian shape as discussed above. The linewidth components plotted in Figure 19 are for
the individual laser. The Lorentzian linewidth is one-half of the Lorentzian component of the self-
heterodyne lineshape, and the Gaussian component is V2/2 times the Gaussian component of the full
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self-heterodyne lineshape. The true width of the individual laser line is the Voigt hinewidth calculated
from the components using (18). Notice that the 3-dB linewidth, which is the commonly used result
from this measurement, underestimates the full linewidth of the laser and overestimates the Lorentzian
component which is the most important to coherent communications performance. The Voigt hinewidth
is larger because the Gaussian components add in quadrature, as noted earlier. It 1s tmportant to note
again that the Gaussian linewidth measured with the self-h . 2rodyne setup is dependent on the length of
the delay; so. to be meaningful, any Gaussian linewidths quoted for this measurcment must be accompa-
nied by the value of the delay.
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8. CONCLUSIONS

The autocorrelation function and power spectrum resulting from delayed self-heterodyne detection
were developed in terms of an arbitrary frequency noise spectrum. ‘Lhese expressions were then evalu-
ated for both the white and 1/f components of the laser frequency noise spectrum. The autocorrelation
function for the 1/f frequency noise was given and numerical results were presented for the associated
power spectrum. This power spectrum. due to 1/f frequency noise alone. was approximately Gaussian
and an empirically derived expression was given for its width. Numerical results were also provided for
the power spectrum resulting from the corabined effect of 1/f and white frequency noise.

High-data-rate heterodyne communications system performance is limited by the white part of the
frequency noise without much effect from the 1/f noise. For this reason, the contribution of the 1/f noise
to the self-heterodyne linewidth measurement is undesirable. The 1/f frequency noise leads to a residual
linewidth at high power and a finite intercept when tinewidth measurements are plotted vs inverse power.
This intercept could range from 0.5 to 7 MHz for reasonable conditions. If an estimate of the level of 1/f
noise level is available, the approximations provided herein can be used to estimate the portion of the
self-heterodyne linewidth due to the white portion of the frequency noise. For certain -limited circum-
stances, it was shown that a careful choice of the self-heterodyne delay allows measurement of the
natural Lorentzian lineshape without broadening due to 1/f noise.

For more general circumstances. two methods of estimating the Lorentzian component {rom the
self-heterodyne lineshape were presented. The first was simply to deduce the laser linewidth from the
width of the lineshape 10 or 20 dB down from the peak where the cffects of the 1/f noise are not as great.
This method performs well when the Gaussian contribution is much less than the Lorentzian contribu-
uon. The second method used approximations for the Voigt profile and searched for the Lorentzian and
Gaussian components needed to match the 3- and 20-dB widths of the Voigt profile 1o the data. This
method extracts the Lorentzian component well even for cases where the Gaussian component is large.
More accurate extraction of the Voigt components may be possible by nonlinear least-squares fitting
procedures, and this possibility deserves further mvestigation. Any Voigt fitting procedures will ulti-
mately be limited by the slightly non-Gaussian character of the 1/f contribution 1o the self-heterodyne
lineshape. The lineshape fitting techniques are dependent on the assumption that the frequency noise
spectrum is composed of only 1/f and white components.

The results presented show that the linewidth measured for a particular laser can depend substan-
tially upon the delay used for the measurement and the level of the 1/f noise. It is suggested that all
linewidths reported in the literature from self-heterodyne measurements should be accompanied by
information on the length of the delay used and, if possible, an estimate of the 1/f frequency noise level
of the laser.
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