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1 /f Frequency Noise Effects on Self-Heterodyne 
Linewidth Measurements 

Linden B. Mercer 

Abstract-The effects of 1 /f frequency noise on self-heterodyne de- 
tection are described and the results are applied to the problem of laser 
diode linewidth measurement. Laser diode linewidths determined by 
self-heterodyne methods are not adequate predictors of coherent com- 
munication system performance because these measurements often in- 
clude significant broadening due to l / f  frequency noise. In this paper 
the self-heterodyne autocorrelation function and power spectrum are 
evaluated for both the white and the l / f  components of the frequency 
noise. From numerical analysis, the power spectrum resulting from the 
l / f  frequency noise is shown to be approximately Gaussian and an 
empirical expression is given for its linewidth. These results are ap- 
plied to the problem of self-heterodyne linewidth measurements for 
coherent optical communications and the amount of broadening due to 
l / f  frequency noise is predicted. Two methods are then provided for 
estimating the portion of the measured self-heterodyne linewidth due 
to the white and l / f  components of the frequency noise spectrum. 

I. INTRODUCTION 
ASER diode linewidths measured using delayed self-het- L erodyne detection often include significant broadening due 

to 1 /f frequency noise. This complicates the evaluation of la- 
sers for use in coherent communication systems because the 
linewidths determined by self-heterodyne methods are not ad- 
equate predictors of performance. Coherent system perfor- 
mance is strongly dependent on the Lorentzian component of 
the laser lineshape resulting from white frequency noise and is 
much less dependent on the component resulting from 1 /f  fre- 
quency noise. The performance of high data rate coherent com- 
munication systems is limited mostly by the white component 
of the frequency noise because the phase or frequency fluctua- 
tions resulting from 1 /f  frequency noise are very small over a 
symbol interval [I]. The 1 /f  frequency noise may impose a 
requirement for frequency tracking to keep the center frequency 
from drifting out of the receiver front end bandwidth; however, 
this requirement is met fairly easily with automatic frequency 
tracking circuits [2]. Homodyne receivers using phase-locked 
loops are somewhat more sensitive to 1 /f  noise; however, for 
typical levels of 1 /f  and white frequency noise the loop band- 
width requirements are still driven solely by the Lorentzian 
component of the linewidth. (This is true fork < x A v 2 ,  where 
0.5 < x < 16 depending on the type of phase-locked loop and 
the allowable level of phase-error variance [3]-[5]) .  

Given that the self-heterodyne linewidth measurement does 
not directly provide estimates of the frequency noise compo- 
nents which are needed, one might decide to use a direct mea- 
surement of frequency noise such as in [ l]. The direct frequency 
noise measurement uses a Fabry-Perot resonator as a frequency 
discriminator. The disadvantages of this measurement are that 
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it is difficult to calibrate and the laser is required to operate at 
fixed frequencies on the Fabry-Perot response curve. The self- 
heterodyne measurement is easier to set up, it is inherently cal- 
ibrated, the laser may operate at any frequency and it is already 
in widespread use. The results given in this paper allow the self- 
heterodyne measurement to provide estimates of the frequency 
noise components without the difficulties associated with the 
frequency noise measurements. 

Most treatments of delayed self-heterodyne detection have 
assumed laser phase noise solely of quantum origin leading to 
a Lorentzian lineshape [6]-[9]. Because the 1 /f  and white fre- 
quency noise components impact communication system per- 
formance differently, a good understanding of the effects of 1 / f  
frequency noise on self-heterodyne linewidth measurements is 
needed so that this characterization technique can provide the 
information needed for accurate predictions of system perfor- 
mance. Recently, Kikuchi and Okoshi have noted the broaden- 
ing effect of 1 /f  frequency noise on the laser diode lineshape 
as measured by the self-heterodyne technique [ I ] ,  [10]-[12]. 
This paper provides a more complete analysis of the effects of 
1 /f frequency noise on self-heterodyne detection by developing 
the autocorrelation function and power spectrum of the photo- 
current in terms of an arbitrary frequency noise spectrum and 
then evaluating them for both the white and the 1 /f  components 
of the frequency noise. These results are then applied to the 
problem of self-heterodyne linewidth measurement for high data 
rate heterodyne communications. Long delays are required for 
these measurements to provide adequate resolution; however, 
long delays result in considerable broadening of the self-hetero- 
dyne lineshape due to l/frequency noise. To overcome this, 
two methods are presented for estimating the white and I / f  
components of the frequency noise from the measured line- 
shape. 

11. FREQUENCY NOISE MODEL 
The starting point of the analysis presented here is based on 

previous work which treated only white frequency noise, SO 

some details are omitted [6]. The optical field from a single 
longitudinal mode semiconductor laser can be modeled as a 
quasimonochromatic field with random phase fluctuations lead- 
ing to broadening of the spectral line. 

The analysis presented here assumes the amplitude of the opti- 
cal field is constant. The phase-noise spectrum S, is the power 
spectrum of the phase fluctuations and the frequency noise spec- 
trum S, is the power spectrum of the frequency fluctuations. 
The mean square phase fluctuation 
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is related to the frequency noise spectrum by [ 131 

2 "  dw 
( A 4 z ( t ) )  = - P S-, sin' ( y )  s m ( w )  wz ( 3 )  

1,f SPECTRUM where ( ) denotes a time average. The two-sided frequency 
noise spectrum can be modeled at frequencies below the relax- 
ation oscillation frequency, as power-dependent white noise and 
power-independent 1 / f  noise 

0 , -  

( 4 )  
k 

S0(w) = S,, + -. 1-4 
Many treatments include only the white noise even though a 
wide variety of semiconductor lasers have been shown to ex- 
hibit substantial levels of 1 / f  noise in addition to the white noise 
[ 141-[20]. For all equations in this paper S, and k are expressed 
in units of (rd/s) '/Hz and (rd/s) ' /Hz,  respectively. S,, and 
k are usually measured single sided in units of Hz'/Hz and 
Hz3/Hz so values given in this paper are in these units. (To 
convert from measured values to the units used in the equations, 
the conversion factors are ( 2 7 ~ ) ~ / 2  and (27r)'/2 for S,, and k ,  
respectively .) 

The actual frequency noise spectrum also has a resonance 
peak at the relaxation oscillation frequency and drops off above 
that frequency. The resonance frequency is typically well above 
2 GHz so from (3) it is clear that neglecting these features only 
affects ( A + * ( t )  ) for 7 in the vicinity of the reciprocal of the 
relaxation oscillation frequency and smaller. The effects of the 
relaxation oscillation on the frequency noise spectrum may be 
important for systems where the symbol rate approaches the re- 
laxation oscillation frequency; however, these effects are ne- 
glected in this paper. 

The component of the phase jitter, A $ ( T ) ,  due to the white 
frequency noise is commonly assumed to be a zero mean, sta- 
tionary, Gaussian random process. The component of the phase 
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Fig. I .  Field spectrum due to I / f  frequency noise only compared to 
Gaussian approximation. k = 2 * IO" Hz' and the observation time is 
1 ms. 
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Fig. 2 .  Field spectrum for a laser with a 7-MHz natural linewidth and k = 
2 * IO" Hz'. The lower curve is the result obtained using a Gaussian ap- 
proximation for the field spectrum due to 1 / f  frequency noise. 

jitter due to the l / f  frequency noise is also stationary and ex- 
hibits Gaussian statistics even though the phase and frequency 
noise, +( 7) and +( 7 ) ,  due to the 1 / f  frequency noise are not 
stationary [20]. Under these conditions 

the linewidth of the aPProximatelY Gaussian Part is roughly 

.J4 In ( 2 ) ( k / 2 a 7 ) [ 1  + In ( T ~ , ~ ,  -11 

The laser field spectrum is found by Fourier transforming the 
field correlation function, ( E * ( t )  E (  t + 7 )  ) where * indicates 
the complex conjugate. The resulting spectrum is the convolu- 
tion of the Lorentzian spectrum associated with the white fre- 
quency noise and the approximately Gaussian spectrum arising 
from the 1 / f  noise. The result of convolving a Lorentzian spec- 
trum and a Gaussian spectrum is known as a Voigt spectrum. 
The Voigt profile is used extensively in investigations of radia- 
tive transfer in the upper atmosphere. In this area of study the 
Voigt profile results from independent Lorentzian and Doppler 
broadening (Doppler broadening leads to a Gaussian line- 
shape). The Voigt function is not available in an analytic form; 
however, many useful approximations are available [2 11-[25]. 
The algorithm provided in [24] uses a 12 term rational approx- 
imation to calculate the Voigt profile for any combination of 
Lorentzian and Gaussian linewidths. The relative error of this 
algorithm is less than 2 * The accuracy of using a Voigt 
profile to model the laser diode lineshape is limited by the ap- 
proximations used in modeling the spectrum due to l / f  fre- 
quency noise with a Gaussian. 

The linewidth of the Lorentzian part of the lineshape taken 
by itself is S,,/2.rr Hz FWHM (full width half maximum) and 

Hz FWHM when observed for Ti,h.. seconds and Toh5 
>> 1 [20] ( k  is the level of the 1 /f noise as in (4)). Fig. 1 shows 
the lineshape due to the l / f  part of the frequency noise com- 
pared to the Gaussian approximation. The Gaussian approxi- 
mation is only good near line center, however; about 90% of 
the power in the lineshape is contained within the region where 
the error in the Gaussian approximation is less than 10%. 
Hence, the lineshape which results from convolving the Gauss- 
ian approximation with a Lorentzian differs very little from the 
lineshape calculated without the approximation. The lower 
curve in Fig. 2 is the lineshape due to combined white and 1 / f  
frequency noise components using the Gaussian approximation 
and the upper curve is the same field spectrum computed with- 
out the approximation. For this case with comparable line- 
widths due to 1 /f and white frequency noise, the error resulting 
from the Gaussian approximation is less than 0.2 dB. For an- 
other case where the Lorentzian linewidth was about 1 / 10 the 
1 / f  linewidth, the error was found to be as large as 2 dB. For 
typical lasers where the linewidth due to l / f  is less than or 
equal to the natural Lorentzian linewidth, the Gaussian approx- 
imation is a good approach to computing the complete line- 
shape. In unusual cases where the linewidth due to 1 /f noise is 
much larger than the natural linewidth, the Gaussian approxi- 
mation for the lineshape due to 1 / f  frequency noise is not ac- 
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Fig. 3 .  Delayed self-heterodyne linewidth measurement setup 

curate and should be avoided. Thus, for common levels of 1 /f 
noise, the complete laser diode lineshape is well approximated 
by a Voigt profile. 

111. DETECTED FIELD MODEL A N D  PHOTOCURRENT 
AUTOCORRELATION FUNCTION 

Following the development of [6], the detected field for the 
delayed self-heterodyne linewidth measurement setup as shown 
in Fig. 3 is the sum of a laser field and a time delayed and 
frequency shifted image of itself 

E,  = E ( r )  + CYE( f + 7,,) exp j f i t  ( 6 )  

and 01 is a real factor which accounts for the amplitude ratio 
between the two fields. The time delay between the two fields 
is 7” and Q is the mean frequency difference between the two 
fields. Assuming stationary fields, the autocorrelation of the 
photocurrent depends only on the intensity correlation function 
of the detected total field Gf: (  7 )  

where e is the electronic charge, q is the detector sensitivity, 
6 ( t )  is the Dirac delta function, and the optical intensity cor- 
relation function is 

GFj(7) = (ET(r)EF(f)E,(t + 7 ) E F ( f  + 7 ) ) .  ( 8 )  

The first term in (7) is the shot noise associated with the dc 
component of the photocurrent. 

IV. AUTOCORRELATION FUNCTION A N D  SPECTRUM FOR 
WHITE FREQUENCY NOISE 

The autocorrelation function is found by substituting (6) into 
(8). This results in 16 terms, 10 of which average out to zero. 
Using ( 5 )  the result as given in 161 is 

G2:(7) = E t [ (  1 + a’)> + 201’ cos fi7 exp ( A ) ]  

where 

A = - ( A + ’ ( 7 , , ) )  - ( A + ” )  

quency noise spectrum 

G 3 7 )  = E: ( 1  + a>)’ + 2O1’ cos n7 I 
exp [ -: j’, sin’ (7) 

This agrees with Kikuchi [12]. It is useful to observe at this 
point that the second term in this autocorrelation is similar to 
the field correlation for a single laser with the addition of a sine 
squared term which acts as a filter on the frequency noise spec- 
trum. For small delay times this sine squared term effectively 
filters out most of the l / f  component of the frequency noise 
spectrum. 

For the white part of the frequency noise spectrum, the in- 
tegral in (10) is easily evaluated and yields 

( 1  + 01’)’ + 201’ COS Q7 

( 1 1 )  

Using the Wiener-Khintchine theorem, the power spectral den- 
sity resulting from the white component is the Fourier transform 
o f ( w ,  WI,  [71 

s ( W )  = E ;  ( I  + a2)’6(a)  + 2O1’ exp ( - ~ ~ ~ 7 , ~ ) 6 ( a  - Q )  i 
2s, + 2cY2 * 

(S,,)’ + (a - Q f  

i n  the limit of large delay times the component of the spectrum 
due to the white frequency noise becomes exactly Lorentzian 
with width equal to twice the individual laser linewidth. For 
delay times which are comparable to or  shorter than the coher- 
ence time, the quasi-Lorentzian part is broadened and scalloped 
and power is shifted into the delta function at the modulation 
frequency. (Illustrations of this behavior are included in [6] and 
[7].) If the delay is much shorter than the coherence time, the 
spectrum consists solely of delta functions at the modulation 
frequency and at dc. 

V. AUTOCORRELATION FUNCTION AND SPECTRUM FOR 
l / f  FREQUENCY NOISE 

For the 1 / f  part of the frequency noise spectrum, evaluation 
of the integral in (10) requires use of the identity 

By substituting (3) into (9) and combining the integrals, the 
intensity correlation function can be written in terms of the fre- 
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Fig. 4. Autocorrelation function for 1 / f  noise only. k = 3 * IO" Hz'. 
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Fig. 6 .  Self-heterodyne linewidth due to I / f  noise only 
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Fig. 5 .  Normalized self-heterodyne lineshape due to 1 / f  alone for k = 2 
* IO" and delay times = 0.1, 0.5, 1, and 5 w s .  

yielding [ 2 6 ]  

( 1  + a*)* + 2 a 2  COS Q r  

Fig. 4 is a plot of the bracketed expression in (14) for k = 3 * 
10" Hz2, showing the dependence of the autocorrelation, and 
thus the frequency spectrum, on the delay time. For times much 
greater than the delay time the slope of the log of the autocor- 
relation as plotted in Fig. 4 is - kr:/a. 

The power spectrum for the l / f  component has been ob- 
tained by fast Fourier transforming the autocorrelation func- 
tion. The result is shown in Fig. 5 for several delay times and 
k = 2 * lo'* Hz2. (Note that this result neglects the dc com- 
ponent and the shot noise.) 

The linewidth of the self-heterodyne spectrum due to l / f  
noise alone is shown in Fig. 6 as a function of the delay for 
several reasonable values of k .  

For the extreme case of short delays such that k.r:/a << 1 ,  
the autocorrelation function is composed of two parts; a narrow 
spike and a dc component. The narrow spike produces a broad 
base in the power spectrum. The dc component corresponds to 
a narrow spike in the power spectrum at the modulation fre- 
quency and as k T i / a  becomes much less than 1,  the power is 
shifted completely into the spike (which becomes a delta func- 
tion in the limit of small k ~ : / a ) .  

LORENTZIAN 
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I I \  I 
-20 -1 0 0 10 20 
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Fig. 7 .  Normalized self-heterodyne lineshape due to 1 / f  alone compared 
to Lorentzian and Gaussian curves with the same 3 dB width (shown for 
comparison)(k = 2 * IO" Hz', delay = 1 p s ) .  

The contribution of the 1 /f  frequency noise to the laser field 
spectrum is approximately Gaussian, so it was expected that the 
contribution to the self-heterodyne spectrum would also be ap- 
proximately Gaussian. Fig. 7 shows the l / f  lineshape and for 
comparison, a Gaussian and Lorentzian with the same width at 
half maximum. The 1 /f  lineshape is very close to the Gaussian 
near the center of the line, but is much stronger than the Gauss- 
ian farther away from the line center. This lineshape does not 
drop off as fast as a Gaussian, but it has much less power in the 
wings than a Lorentzian. The Gaussian component of the line- 
shape has nearly the same lineshape and & times the width of 
the field spectrum of the individual laser for cases where 
k r : / T  >> 1. 

Using (14) a Gaussian approximation for the autocorrelation 
was derived empirically. For k T ? / a  >> 1 

G ~ ? ( T )  = F:\(l + + 2aZ cos Q T  

k 
fors,  = -. I W I  

The power spectral density resulting from this approximation is 
also Gaussian. The linewidth predicted from this approximation 
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is 

) Hz FWHM. (16) 
H 

This approximation is plotted in Fig. 6 as a solid line. Good 
accuracy is obtained for large delays. For fixed delay 7, the 
Gaussian linewidth is roughly proportional to A. This de- 
pendence leads to the & relationship between the Gaussian 
component of the field spectrum and the Gaussian component 
of the self-heterodyne lineshape. 

Note that the linewidth due to the l / f  component is not in- 
dependent of the delay even for large delays. This is due to the 
very low frequencies present in the 1 /f  noise. The analysis pre- 
sented here is general in that it is valid for any delay. Results 
of any analysis which assumes mutual incoherence of the two 
optical fields (such as [27]), should be used with caution be- 
cause of course the strong low frequency components of the l /f  
noise are correlated even for very long delays. 

VI. AUTOCORRELATION FUNCTION AND SPECTRUM FOR 
WHITE AND I / f  FREQUENCY NOISE COMBINED 

For the combined white and l / f  frequency noise actually 
present in most semiconductor lasers the autocorrelation func- 
tion is simply a combination of the results already given. 

G ~ : ( T )  = E;  = { ( I  + a*)' + 2a cos ( Q T ) L G }  

where 

-s(,\ T (  

- S, T ~ ,  

for 1 T (  I 7, 

for 1 7 I L T,, 
L = exp 

and 

The power spectral density for the combined white and 1 /f  fre- 
quency noise can be evaluated by finding the FFT of (17). Fig. 
8 shows plots of the linewidths which would be observed using 
self-heterodyne detection for lasers with natural linewidths of 
10 and 2 MHz. The component of the linewidth due to the 1 /f  
frequency noise by itself was shown in Fig. 6 for the same de- 
lays and k values used here. 

The linewidth due to combined white and 1 /f frequency noise 
can be approximated for long delay times using the Gaussian 
approximation given earlier. The relationship between the com- 
plete Voigt lineshape and the Gaussian and Lorentzian line- 
shapes is approximated by the expression 

ay = ;( 1 . 0 6 9 2 ~ ~  + d0 .866639~~2  + 4a;) (18) 

where ay,  aG, and al. are the Voigt, Gaussian, and Lorentzian 
linewidths, respectively. If the 1 /f lineshape were exactly 
Gaussian, the error in (18) would be less than about 0.01 per- 
cent [28]. The linewidths predicted using these approximations 
are plotted as a solid line in Fig. 8. The error seen in this ap- 
proximation is due to the slightly non-Gaussian lineshape re- 
sulting from the 1 / f  component of the frequency noise. 

" I  I "" 

DELAY (vs) 

(b) 

Fig. 8 .  Self-heterodyne linewidth versus delay. (a) S,, /2n = 10 MHz. (b) 
S,,/2?r = 2 MHz. 

VII. EFFECTS OF l / f  ON LINEWIDTH MEASUREMENTS 
The broadening of the delayed self-heterodyne lineshape re- 

sulting from 1 /f  frequency noise has particular significance in 
the context of linewidth measurements for high data rate coher- 
ent communication systems. Since the performance of these 
systems is largely unaffected by l / f  noise, it is desirable to 
know the natural linewidth which would result from the white 
component of the frequency noise alone. In general, the line- 
widths estimated from self-heterodyne measurements are sim- 
ply one-half of the full width at half-maximum of the self- 
heterodyne lineshape. From Fig. 8, it is obvious that this line- 
width is often substantially larger than the natural Lorentzian 
component of the linewidth. 

As first observed by Kikuchi and Okoshi, the broadening of 
the self-heterodyne linewidth by 1 /f  frequency noise can lead 
to a residual linewidth at high powers [ l ] ,  [lo]-[12]. The nat- 
ural linewidth as predicted by the Schawlow-Townes formula 
with the broadening factors introduced by Henry 1291, varies 
inversely with laser output power in the main longitudinal mode. 
The 1 /f  frequency noise is normally constant with power [20]. 
1 /f  noise thus produces a residual linewidth at the high power 
limit and also causes a finite intercept when self-heterodyne 
linewidths are plotted against inverse power. For Fig. 9 the 
linewidth which would be measured by the self-heterodyne 
technique with a 5-ps delay is plotted for a constant level of 
l / f  noise ( k  = 10" Hz') and a varying natural linewidth. This 
simulates a plot of linewidth versus inverse power. For small 
natural linewidths a residual is observed and a line fitted to all 
of the data is seen to intercept the dependent axis at 3.0 MHz. 
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Fig. 9. Self-heterodyne linewidth/2 versus natural linewidth showing fi- 
nite intercept due to l / f  noise ( k  = 10” HzZ, delay = 5 p s ) .  

The residual linewidth in the limit of high power is simply the 
1 /f  self-heterodyne linewidth divided by 2 .  For the case in Fig. 
9 the residual linewidth would be 3.9 MHz. 

This procedure was repeated for a range of 1 /f noise levels 
and several different delay times and the intercepts which re- 
sulted are plotted in Fig. 10. The line fits were produced using 
a range of five Lorentzian linewidths from 2 to 25 MHz. The 
intercepts are dependent on the range of points fitted and so 
should be seen as approximate values only. 

In some circumstances direct measurement of the natural 
linewidth may be possible by tailoring the length of the delay 
used for the self-heterodyne measurement. For instance, if it 
were known from independent measurements that k < 2.5 * 
10” Hz2, then choosing a delay of 0.3 ps would make the 1 /f  
contribution to the measured linewidth negligible as can be seen 
from Fig. 6. In this case the smallest Lorentzian linewidth which 
could be measured directly would be about 5 MHz [ 7 ] .  This 
approach of tailoring the delay to reduce effects of l / f  noise 
has limited value because many semiconductor lasers have k > 
l O I 3  Hz2 leading to selection of a delay shorter than 0.15 ps. 
This delay would only allow direct measurement of Lorentzian 
linewidths greater than about 10 MHz. 

The broadening effect of the 1 /f  frequency noise is most pro- 
nounced near the center of the self-heterodyne lineshape. If sig- 
nal and noise levels permit, a more accurate estimate of the 
Lorentzian part of the linewidth of the laser diode under test 
can be obtained from the width 10 or 20 dB down from the 
maximum. Fig. 11 shows the linewidths determined from the 
width 20 dB down are much closer to the Lorentzian linewidth. 
The linewidths were determined from the 3,  10, and 20 dB 
widths of numerically generated lineshapes simply assuming a 
Lorentzian lineshape. (The 3-dB linewidth is the self-hetero- 
dyne linewidth divided by 2,  the 10-dB linewidth is the self- 
heterodyne linewidth 10 dB down divided by 6, the 20-dB line- 
width is the self-heterodyne linewidth 20 dB down divided by 

Good estimates of the Lorentzian and Gaussian components 
can be obtained by fitting a Voigt profile to the measured self- 
heterodyne lineshape. As noted earlier in developing the fre- 
quency noise model, efficient and accurate algorithms are avail- 
able for estimating the Voigt lineshape for any combination of 
Lorentzian and Gaussian contributions [21]-[25]. Some of the 
approximations for the Voigt profile also provide derivatives 
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Fig. 10. Infinite power intercept due to 1 / f  frequency noise 
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(b) 
Fig. 11. Linewidth versus k determined from 3 ,  10, 20 dB widths of the 
self-heterodyne lineshape for 2- and IO-MHz Lorentzian linewidths, (a) 
delay = 0.5 ps, (b) delay = 50 ps. 

with respect to all of the parameters allowing application of 
nonlinear least squares fitting procedures. These fitting proce- 
dures use the Voigt function and derivatives for each point in 
the lineshape and iterate until a minimum error is obtained. 

An alternative method of using the Voigt approximations to 
estimate the Gaussian and Lorentzian parts of a measured self- 
heterodyne lineshape is given here. This approach requires 
fewer computations than the nonlinear least squares fitting pro- 
cedures. The Lorentzian component is initially estimated from 
the 20-dB linewidth by simply assuming a Lorentzian line- 
shape. Then the Gaussian component is estimated by using the 
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Fig. 12. Lorentzian and Gaussian components estimated from Voigt fitting 
of self-heterodyne lineshape for delays of 0.5, 5 ,  and 50 ps. (a) S,,/2a = 

I O  MHz. (b) S , , / ~ T  = 2 MHz. 

3-dB linewidth and (18). Using this estimate of the Gaussian 
component, a new estimate of the Lorentzian component can be 
found by using a Voigt approximation and iterating to find the 
Lorentzian value required to produce a 20 dB width equal to the 
measured width. The new Lorentzian value is then used to re- 
fine the estimate of the Gaussian component and these steps are 
repeated until the estimates converge. Convergence is fairly 
rapid because the 20-dB linewidth is dominated more by the 
Lorentzian contribution while the 3-dB linewidth is strongly af- 
fected by the Gaussian component. The Voigt approximation 
used here is the one found in [24]. 

To test its accuracy over a wide range of inputs, this Voigt 
lineshape fitting procedure was applied to self-heterodyne line- 
shapes computed numerically. Ideally, the fitting procedure 
would return exactly the magnitude of the Lorentzian compo- 
nent used to generate the lineshapes and the Gaussian compo- 
nent should agree with the linewidth predicted for l / f  alone. 
The results are given in Fig. 12. The estimates of the Lorentz- 
ian component are very close to the correct value with a small 
error appearing for the 2-MHz where the Gaussian component 
begins to be much larger than the Lorentzian component. The 
estimates of the Gaussian component were mostly within 2% of 
the predictions for the 2-MHz Lorentzian case (the maximum 
error of 14% occurred for T,, = 0.5 ps and k = 2.5 * 10”) and 
mostly within 10% for the 10-MHz Lorentzian case (the max- 
imum error of 46% occurred for T ,  = 0.5 ps and k = 2.5 * 
10”). 

0 

-5 

6 : -10 
N 
I 
cl 

-15 - - z- 
-20 

-25 

FREQUENCY (MHz) 

Fig. 13. Measured self-heterodyne lineshape and Voigt fit; 3-dB linewidth 
= 10.2 MHz, 20-dB linewidth = 8.0 MHz, Voigt linewidth = 12.1 MHz, 
Lorentzian linewidth = 7.2 MHz, Gaussian linewidth = 7.6 MHz. 
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Fig. 14. (a) Measured 3- and 20-dB linewidths versus l/power. (b) Cor- 
responding Voigt, Lorentzian and Gaussian linewidths versus 1 /power, 
determined using the Voigt fitting procedure. 

This Voigt fitting procedure was also applied to actual self- 
heterodyne lineshapes. The experimental setup used a 500-m 
fiber delay line providing 2.5 ps of delay. Fig. 13 shows a mea- 
sured lineshape and the Voigt lineshape resulting from the fit. 
The laser for this test was a 30-mW Hitachi HL8314E. 

The results of applying the Voigt fitting procedure to a typical 
set of linewidth versus power measurements are shown in Fig. 
14. The laser used for these tests was a Spectra Diode SDL- 
5410-C 100 mW laser diode. The data used to produce the fits 
were the 3- and 20-dB widths. The 3- and 20-dB widths were 
derived from the lineshape assuming a Lorentzian shape as dis- 
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cussed above. The linewidth components plotted in Fig. 14 are 
for the individual laser. The Lorentzian linewidth is one-half of 
the Lorentzian component of the self-heterodyne lineshape and 
the Gaussian component is J2/2  times the Gaussian compo- 
nent of the full self-heterodyne lineshape. The true width of the 
individual laser line is the Voigt linewidth calculated from the 
components using (18). Notice that the 3-dB linewidth, which 
is the commonly used result from this measurement, underes- 
timates the full linewidth of the laser and overestimates the Lo- 
rentzian component which is the most important to coherent 
communications performance. It is important to note again that 
the Gaussian linewidth measured with the self-heterodyne setup 
is dependent on the length of the delay so any Gaussian line- 
widths quoted for self-heterodyne measurements must be ac- 
companied by the value of the delay to be meaningful. 

VIII. CONCLUSIONS 

The autocorrelation function and power spectrum resulting 
from delayed self-heterodyne detection were developed in terms 
of an arbitrary frequency noise spectrum. These expressions 
were then evaluated for both the white and 1 /f  components of 
the laser frequency noise spectrum. The autocorrelation func- 
tion for the l / f  frequency noise was given and numerical re- 
sults were presented for the associated power spectrum. This 
power spectrum, due to l / f  frequency noise alone, was ap- 
proximately Gaussian and an empirically derived expression was 
given for its width. Numerical results were also provided for 
the power spectrum resulting from the combined effect of 1 / f  
and white frequency noise. 

High data rate heterodyne communication system perfor- 
mance is limited by the white part of the frequency noise with- 
out much effect from the l / f  noise. For this reason the 
contribution of the 1 /f  noise to the self-heterodyne linewidth 
measurement is undesirable. The 1 /f  frequency noise leads to 
a residual linewidth at a high power and a finite intercept when 
linewidth measurements are plotted versus inverse power. This 
intercept could range from 0.5 to 7 MHz for reasonable con- 
ditions. For certain limited circumstances, it was shown that a 
careful choice of the self-heterodyne delay allows measurement 
of the natural Lorentzian lineshape without broadening due to 
1 / f  noise. 

For more general circumstances, two methods of estimating 
the Lorentzian component from the self-heterodyne lineshape 
were presented. The first was simply to deduce the laser line- 
width from the width of the lineshape 10 or 20 dB down from 
the peak where the effects of the 1 /f  noise are not as great. This 
method performs well when the Gaussian contribution is much 
less than the Lorentzian contribution. The second method used 
approximations for the Voigt profile and searched for the Lo- 
rentzian and Gaussian components needed to match the 3 and 
20 dB widths of the Voigt profile to the data. This method ex- 
tracts the Lorentzian component well even for cases where the 
Gaussian component is large. More accurate extraction of the 
Voigt components may be possible by nonlinear least squares 
fitting procedures and this possibility deserves further investi- 
gation. Any Voigt fitting procedures will ultimately be limited 
by the slightly non-Gaussian character of the 1 /f  contribution 
to the self-heterodyne lineshape. The lineshape fitting tech- 
niques are also dependent on the assumption that the frequency 
noise spectrum is composed of only 1 /f and white components. 

The results presented show that the linewidth measured for a 
particular laser can depend substantially upon the delay used 
for the measurement and the level of the l / f  noise. It is sug- 
gested that all linewidths reported in the literature from self- 
heterodyne measurements should be accompanied by informa- 
tion on the length of the delay used and if possible an estimate 
of the 1 / f  frequency noise level of the laser. 
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