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Abstract

The power spectrum of quantum dot (QD) fluorescence exhibits βf1 noise,

related to the intermittency of these nanosystems. As in other systems exhibiting

f1 noise, this power spectrum is not integrable at low frequencies, which

appears to imply infinite total power. We report measurements of individual

QDs that address this long-standing paradox. We find that the level of βf1 noise

decays with the observation time. The change of the spectrum with time places a

bound on the total power. These observations are in stark contrast with most

measurements of noise in macroscopic systems which do not exhibit any evi-

dence for non-stationarity. We show that the traditional description of the power

spectrum with a single exponent β is incomplete and three additional critical

exponents characterize the dependence on experimental time.
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1. Introduction

The power spectrum of many natural signals exhibits f1 noise at low frequencies [1, 2]. This

noise appears in an extremely broad range of systems that includes electrical signals in vacuum

tubes, semiconductor devices, and metal films [3, 4], as well as earthquakes [5], network traffic

[6], evolution [7], and human cognition [8]. All these systems are characterized by a power

spectrum of the universal form ∼ βS f A f( ) , where the exponent β is between 0 and 2 [3, 9, 10].

The long time that has passed since the first discovery of this phenomenon [11] led to multiple

theories, competing schools of thought and many unresolved problems. One of the major

problems lies in the fact that the spectrum is not integrable at low frequencies if β > 1, i.e.,

∫ = ∞
∞
S f f( )d

0
. This is a paradoxical issue since the total power cannot be infinite, as implied

by the divergence of the integral to infinity. In order to solve this paradox, Mandelbrot

suggested that f1 noises are related to non-stationary processes [3]. However, f1 noise in

macroscopic systems, where a large number of subunits are intrinsically averaged, do not

exhibit evidence of non-stationarity [10], hence this famous paradox remains open. Moreover,

these ideas have been often contested, for example, by assuming that there exist some low-

frequency cutoff fc under which the non-integrable f1 spectrum is no longer observed. For this

reason, several groups have increased the measurement time in an attempt to find this evasive

low-frequency cutoff. For example, spectral estimations have been obtained for one cycle in

three weeks in operational amplifiers [12] and one cycle in 300 years in weather data [13].

Despite such long measurements, no low-frequency cutoff was found in these systems.

During the last two decades, experimental work has shown that f1 noise is also observed

in a vast array of nanoscale systems. For example, such noise was observed in individual ion

channel conductivity [14, 15], electrochemical signals in nanoscale electrodes [16],

biorecognition processes leading to the formation of a complex [17], and graphene devices

[18]. Noise in nanoscale systems is particularly intriguing due to their sensitivity to

environmental conditions. Furthermore, the characterization of noise properties in nanomater-

ials is an important challenge with direct applications in the stabilization of these materials for

nanotechnology devices.

A well investigated but still poorly understood case is blinking in nanocrystals, also known

as quantum dots. These systems, when excited by a continuous wave laser, exhibit fluorescence

blinking, namely random switching between dark and bright states, with sojourn times

distributed according to power laws with heavy tails [19–21]. This power law behavior was

shown by Brokmann et al [22] to induce unusual phenomena such as ergodicity breaking and

non-stationary correlation functions, which are discussed here in the summary. Physical models

underlying a power law sojourn time distribution are based on distributed tunnelling

mechanisms or diffusion controlled reactions [20, 23, 24]. Blinking dynamics is usually

quantified with an exponent that describes the power law sojourn time (see details below). This

characterization is obtained by thresholding the data in order to distinguish between ‘on’ and

‘off’ states. However, thresholding is sometimes scrutinized since the threshold value is rather

arbitrary and hence a power spectral analysis is postulated to be a preferred tool [21, 25, 26].

Power spectrum is of course the most typical tool used to quantify noise.

Quantum dot (QD) intermittency has attracted considerable attention due to the intriguing

optical properties of zero-dimensional materials as well as the power law statistics of ‘on’ and

‘off’ times [23, 27]. Due to the scale-free properties of power law statistics, intermittency
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naturally yields a power spectrum of the form βf1 [28]. In this report we measure the power

spectra of blinking QDs, namely we investigate individual nanoscale systems avoiding

ensemble averaging. We address the fundamental question, whether the standard picture of

blinking, found also in organic fluorophores, is characterized by a single exponent? We show

that the description of QD power spectrum with a single exponent is incomplete since it hides

rich physical phenomena. Instead, the power spectrum of these systems is characterized by four

exponents denoted β, z, ω, and γ and, importantly, we explain the physical meaning of these

critical exponents. The power spectrum of blinking dots turns out to be unusual in the sense that

it ages with experimental time. Roughly speaking, the longer is the observation time, the level

of noise decreases. More specifically, the power spectrum ages as −t z with >z 0 and t is the

measurement time. In this sense, the power spectrum is non-stationary, in the spirit of

Mandelbrot suggestion [3]. While the focus of this report is on blinking QDs, we believe that

the underlying non-stationary behavior describes a large number of self-similar intermittent

systems at the nanoscale, including to name a few, liquid crystals [29], biorecognition [17],

nanoscale electrodes [16], and organic fluorophores [30].

2. Theoretical model

The simplest way to model intermittency is within the assumption of a two-state process. The

QD switches between an active state where the intensity of the signal is I0 to a passive state

where the intensity is zero. This model is sketched in figure 1(A). The sojourn times τ{ } in states

‘on’ and ‘off’ are independent and identically distributed (i.i.d.) random variables with, for the

sake of simplicity, a common probability distribution function ψ τ τ∼
α− +( ) (1 ). A particularly

interesting situation arises when α< <0 1 because then the mean sojourn time diverges and

thus the process lacks a characteristic time. Otherwise, for α > 1, the mean sojourn time is

finite. Diffusion controlled mechanisms of QD blinking lead to α = 1 2, though measurements

show deviations from this behavior, suggesting that a wider spectrum of exponents α< <1 2 1

Figure 1. Simplified stochastic model for QD intermittency. (A) An individual QD
alternates between states ‘on’ and ‘off’ with intensities I0 and zero. The sojourn times
are τ j where j is respectively odd and even for ‘on’ and ‘off’ states. The measurement

time is t. (B) Additional Gaussian noise in the ‘on’ and ‘off’ levels is depicted so that
the intensity in these states is not constant but it fluctuates around the mean.
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is more suitable. For the two-state process, the system yields a power spectrum

∼
β

S f
A

f
( ) , (1)t

t

with the exponent β α= −2 when α< <0 1 [31–34]. When the signal is measured over a

finite experimental time t, the power spectral density (PSD) is typically estimated using the
periodogram method, = −S f I f t I f t t( ) ˜ ( , ) ˜ ( , )t , where I f t˜ ( , ) is the Fourier transform of the

intensity, ∫ τ π τ τ= −I f t I f˜ ( , ) ( ) exp ( i2 )d
t

0
. Using this method, it was shown theoretically that

the power spectrum decays with experimental time [33]. The time dependence of the spectrum

can be found from simple scaling arguments. Because both states are assumed to be identically

distributed, the total power is a constant. Thus

∫
β

=

−
=

β∞ − +

S f f A
t

( )d
(1 )

1
const, (2)

t
t t

1

1

where integration is performed from t1 , which is the lowest measured frequency. Therefore

∼ −A t , (3)t
z

with β= −z 1. Given the relation β α= −2 , we have

α= −z 1 . (4)

The exponent z is termed the aging exponent. The time dependence of the power spectrum

reflects the non-stationarity of the process as it indicates that the longer the observation time, the

smaller the amplitude of the power spectrum. In other words, the longer one observes the

system, the QD gets trapped in longer and longer dark or bright states, thus the switching rate is

effectively reduced and f1 noise goes down. To the best of our knowledge, these predictions

were not yet experimentally tested. This simple theoretical model bears non-negligible

limitations in the analysis of QD intermittency. First, the system is assumed to consist of two

identical states. Second, noise in the experimental system, beyond the switching events, is

neglected (figure 1(B)). As we shall see in our results, these simplifications fail to capture some

of the observed physics. However, these theoretical predictions are an excellent starting point in

the analysis of blinking power spectrum.

3. Experimental methods: QD imaging

Core–shell CdSe–ZnS QDs were purchased from Life Technologies (Qdot 655, Invitrogen). In

order to avoid aggregation, the QDs were dispersed in a 1% (w/v) bovine serum albumin

solution to a final concentration of 1 nM. A 20 μL drop of this solution was placed on a glass

coverslip (Warner Instruments, Hamden, CT) that had been cleaned by sonication in acetone

and ethanol. After a 10min. incubation period the coverslip was thoroughly rinsed with

deionized water and dried with nitrogen. We recorded the fluorescence from 1200 QDs for

22min at room temperature in a Nikon Eclipse Ti TIRF/widefield fluorescence microscope.

QDs were excited by a 488 nm laser line and the emission was collected with a bandpass filter.

Images were acquired in a frame-transfer electron multiplying charge-coupled device (EMCCD

iXon DU-897, Andor, Belfast UK) at 50 frames per second (exposure time of 20ms).

QD intensities were measured using an automated algorithm implemented in LabView,

which computes the total intensity of each QD. Due to spatial inhomogeneities in excitation
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power and dot-to-dot variations in quantum yield, different QDs can have varying fluorescence

intensities. Thus, we normalize the data so that all intensities lie between zero and one, allowing

us to work with a more convenient dimensionless intensity system. For this purpose, we first

subtract the minimum value of the intensity along each QD trace and then divide it by the

maximum (after subtraction) intensity value.

4. Results

Figure 2(A) shows the first 600 s of the normalized intensity trace of a typical QD. Usually, QD

blinking is analyzed by using a threshold that defines bright and dark states [19, 20, 22]. As

mentioned, the threshold determination is rather arbitrary, and in that sense power spectrum

analysis is preferred [26]. In agreement with previous observations, the distribution of ‘off’

times is well described by a power law ψ τ τ∼
α− +( )off

(1 ); whereas, the distribution of ‘on’ times

shows truncated power law behavior ψ τ τ∼
α τ τ− + −( ) eon

(1 ) on [20]. In our data we find

α = ±0.63 0.10 and τ = 8.5on s, a time scale that will soon become important.

Figure 2. Intermittency in QD fluorescence. (A) Normalized fluorescence intensity of an
individual CdSe–ZnS QD, i.e., maximum intensity is unity. (B) PSD of the emission
from a single QD measured for 1311 s. (C) Average PSD from the emission of 1200
individual QDs. The experimental times are 10 and 1311 s. The short-time spectrum is
shifted for clarity. The lines show linear regression of the log–log plot for high and low
frequencies according to equation (1), and the red arrows point to the transition
frequency fT.
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A representative power spectrum from an individual QD is shown in figure 2(B). The

experimental time of the time trace employed in the computation of this spectrum is 1311 s, i.e.,

the whole available time. Since the normalized intensity is dimensionless, the PSD has units of
−Hz 1. Figure 2(C) shows PSDs obtained from averaging the spectra of 1200 individual QDs for

experimental times of 10 and 1311 s. The spectrum of the long-time trace exhibits two regimes

with distinctive βf1 behavior. For frequencies below a transition frequency fT we have

∼
β−

<S f f( )t with β = ±
<

0.76 0.02 (n = 1200 traces) while above this frequency we have

∼
β−

>S f f( )t with β = ±
>

1.393 0.002. The separation into two regimes is caused by the cutoff

that characterizes the ‘on’-time distribution. Hence, the transition frequency fT is, not

surprisingly, of the order of τ1 on. We will soon compare our experimental findings with the

theory for β
>
and β

<
, but let us first discuss the transition frequency.

4.1. The transition frequency fT

The existence of a transition frequency implies that the measurement time is crucial. The PSD

of the short-time trace (figure 2(C) with t = 10 s) displays βf1 spectrum with a single spectral

exponent β
>
. On the other hand, long enough measurements yield the transition to a different

behavior. Importantly, an observer analyzing short-time traces would reach the conclusion that

the power spectrum is non-integrable, since β >
>

1. If we wait long enough we eventually

observe integrable f1 noise, since β <
<

1. In some sense we are lucky to observe this transition:

it is detected since the cutoff time τon is on a reasonable time scale.

Previously, Pelton et al have reported a transition frequency in the power spectrum of

blinking QDs [35]. However, that transition has a different nature from the one reported here. In

our measurements, a cutoff in ‘on’ sojourn times introduces a transition from α−f1 2 to αf1 at

low frequencies, i.e., long time behavior, with fT of the order of 0.06Hz. On the other hand,

Pelton et al find a high frequency transition, i.e., short time behavior, where the spectrum shifts

from α−f1 2 to f1 2 at frequencies above the transition. This high frequency transition was found

to be of the order of 100Hz. The transition to f1 2 spectrum was interpreted as short time carrier

diffusion yielding, at high frequencies, the power spectrum characteristic of Brownian

motion [35].

4.2. Spectral exponents β
<
and β

>

Both exponents β
<
and β

>
are related to α. The exponents measured in this study are reported in

table 1 for the benefit of the reader. For frequencies >f fT, the cutoff time is of no evident

relevance and both states are effectively distributed with power law statistics ψ τ τ∼
α− +( ) (1 ). In

this regime, theory predicts β α= −
>

2 as mentioned above. Since α = ±0.63 0.10, we expect

β = ±
>

1.37 0.10, which is similar to the measured exponent. In contrast, for <f fT we must

consider the effect of the cutoff time. Thus, we define a modified model, which includes a cutoff

in the distribution of ‘on’ times, so that the probability density functions of ‘on’ and ‘off’

sojourn times are different. The important feature of this model is that the mean ‘on’ sojourn

time is finite, which modifies the underlying exponents that describe the power spectrum. For

this case, one finds β α=
<

. Experimentally we find β = ±
<

0.76 0.02 while α = ±0.63 0.10,

so small deviations are found. The theoretical sum rule β β+ =
< >

2 is insensitive to the value

of α provided that α < 1, since this implies the divergence of the mean ‘off’ sojourn time, which

is the main condition for the observed self-similar behavior.
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4.3. Aging exponent z

Since the ‘off’ sojourn times are scale free, i.e., mean time is infinite, we expect the amplitude

of the power spectrum At to depend on measurement time. Figure 3(A) shows averaged power

spectra computed for trajectory lengths of 5.1, 20.5, 82, and 1311 s. As the experimental time t

increases, the magnitude of the PSD is not constant but it decreases. To the best of our

knowledge, this is the first experimental report explicitly showing that f1 noise in nanoscale

systems ages and the concept of stationary f1 noise, so popular in a vast literature, breaks

down. Figure 3(B) shows that the PSD data collapse to a single master trace when multiplied by

t0.12. According to the theory [33], the power spectrum amplitude scales as ∼
−A tt
z with the

exponent α= −z 1 both below and above the transition frequency. Thus we expect

Table 1. Exponents that describe f1 noise for QD emission (experimental data) and

simulations. Results from numerical simulations of two dichotomous random processes
are shown: power law distributed waiting times (PL) and power law with cutoff in ‘on’
times and noise (PLCN). The exponents describe the power spectrum, aging, crossover
frequency, and zero-frequency spectrum.

Experimental data

Numerical

simulations

Theory [33] QD PL PLCN

β
> ∼

βS f f( ) 1t β α= −
>

2 1.39 1.38 1.35

β
< β α=

<

0.76 0.62

z
∼A t1t

z α= −z 1 0.12 0.36 0.31

γ
∼

γf t1c γ = 1 0.79a 0.99 0.72a

ω
∼

ωS t(0)t ω = 1
b 0.85 0.99 0.84

a These results hold for τ<t on. For longer times γ > 1.
b For long times we have ω α= −2 1.

Figure 3. Aging of the power spectrum. (A) Average of 1200 QD power spectral
densities for four different experimental times: 5.1, 20.5, 82, and 1311 s. (B) When the
power spectral density is multiplied by an aging factor tz with z = 0.12, where t is the
experimental time, the spectra collapse to a single trace.

7

New J. Phys. 16 (2014) 113054 S Sadegh et al



= ±z 0.37 0.10, which is slightly larger than the measured value of the aging exponent

z = 0.12. We will address this deviation with simulations showing that additional noise in the

‘on’ state (see figure 1) is important.

4.4. The zero frequency exponent ω

Next, we define the spectrum at zero frequency with

∫ τ τ
= ==

( )
S S f

I

t
(0) ( )

( )d
, (5)t t f

t

0
0

2

and the corresponding exponent ∼ ω
=S f t( )|t f 0 . Notice that S t(0)t is merely the square of the

time average ∫ τ τI t( )d
t

0
and its experimental evaluation does not require a fast Fourier

transform. For stationary and ergodic processes with non-zero mean intensity we have normal

behavior ω = 1. On the other hand, if ω < 1 the average intensity decays to zero. As shown in

figure 4(A), our measurements yield ω ≃ 0.85, which is a second indication of non-stationarity.

In our system, for long experimental times, the ‘on’ time distribution displays a cutoff and

thus the mean ‘on’ time is finite. Therefore, the expected area under the intensity time trace can

be estimated to be

∫ τ τ τ=I n I( )d , (6)
t

0
on on

where Ion is the intensity in the ‘on’ level and 〈 〉n is the average number of renewals up to time t,

i.e., the number of switchings, which is known to increase as αt for waiting ‘off’ times

distributed according to power laws [36, 37]. Hence we see that theoretically

∼ ≃α
=

−S f t t( )|t f 0
2 1 0.26. Within this model, ω α= − =2 1 0.26. The measurements in

figure 4(A) give ω = 0.85, which is surprising since we expect that, at least for long times

compared with τon, the cutoff in the ‘on’ times dictate the behavior of the zero frequency

spectrum. We will soon remove this mystery by detailed consideration of the effects of noise in

the ‘on’ and ‘off’ states using numerical simulations. What becomes clear is that the standard

description of blinking systems with a single exponent α, so popular in the literature does not

describe aging accurately and needs to be expanded. Namely, in our measurements, ω is not

obtained from α in a straightforward way. Hence the standard picture of these systems is

challenged.

4.5. The crossover frequency f c ∼ t−γ

The transition between the zero frequency spectrum S (0)t and the small but finite frequency

behavior ∼ β−S f f( )t , defines a crossover or cutoff frequency fc. A crossover frequency is many

times assumed to be time independent, though its observation may require extremely long

measurement times. For example, in spin glasses the inverse of the cutoff frequency was

estimated to be of the order of age of universe [10], and hence it cannot be directly investigated.

Given that the PSD ages, we hypothesize the cuttoff frequency also changes with experimental

time. We investigate the time dependence of fc within our observation window, which is long in

the sense that we measure thousands of transitions between ‘on’ and ‘off’ states. In order to

estimate fc, we extrapolate equation (1) to the intersection with the zero-frequency spectrum,
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given by equation (5), as shown in figures 4(B) and (C). According to the two state model with

i.i.d. sojourn times, ∼
γ−f tc , and γ = 1 [33]. Again this behavior can be derived using scaling

arguments. First, we use idealized models, which, by noting that at the crossover frequency

=
β−A f S (0)t tc

, give ∼
α− − −t f tz

c
(2 ) for short times and ∼

α α− − −t f tz
c

2 1 for long times.

Surprisingly, these scaling arguments predict ∼f t1c for all times, independent of τon. Hence,

in this case γ = 1. However, since we already observed deviations in ω and z from the idealized

two-state model, we now use a more general approach. Here, a second scaling approach relates

the various exponents that characterize the process. As before, we employ the relation

=
β−A f S (0)t tc

, which yields ∼
β ω− −t f tz

c
from the definitions of the various critical exponents.

Thus we find

γ
ω

β
=

+ z
. (7)

Figure 4. Additional critical exponents describing QD intermittency. (A) Zero-
frequency spectrum versus experimental time. (B-C) Examples showing how the
crossover frequency fc is found from the average power spectrum. The horizontal line
shows = =S S f(0) ( ) |t t f 0. The crossover frequency fc is found by extrapolating

∼
β−S f A f( )t t to the intersection with S (0)t . In (B) the experimental time is t = 5.1 s,

thus ∼
β−

>S f A f( )t t . On the other hand, in (C) the time is t = 1311 s, thus the spectrum

shows two different frequency regimes, with ∼
β−

<S f A f( )t t for <f fT . Note that fc
shifts by more than three orders of magnitude between 5.1 and 1311 s. (D) Crossover
frequency versus experimental time. We find that ∼

ωS t(0)t with ω = 0.85 and, for

short times, ∼
γ−f tc with γ = −0.79.
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Using measured values for ω, z, and β, we have γ = 0.70 for short times (see table 1, ω = 0.85,

z = 0.12, and β =
>

1.39) and γ = 1.27 for long times (β =
<

0.76).
For short times, we observe in experiments that the crossover frequency scales with

experimental time as ∼ −f tc
0.79 (figure 4(D)). Thus γ = 0.79, which is in good agreement

with our general scaling argument approach (equation (7)) and is consistent with the other

critical exponent measurements. For longer measurement times, as seen in figure 2(C), the

low frequency spectrum shifts from ∼ β
>S f f( ) 1t to ∼ αS f f( ) 1t where β α>

>
. As a

consequence of this effect, a transition is observed roughly on the cutoff time τon and fc
decays faster, namely, γ > 1 for τ>t on. The behavior can be qualitatively understood, by

comparing figures 4(B) and (C). As the slope of the power spectrum becomes less steep, the

crossover is rapidly shifted to smaller frequencies. The value for γ at long times is difficult

to estimate from our measurements, but it is roughly γ = 1.24. Again, this value is

consistent with the measured values of ω and z as predicted by scaling arguments

(equation (7)).

4.6. Numerical simulations

Deviations between experiments and theory can arise from at least three sources: experimental

noise, finite measurement time, and model assumptions not being realistic. Recall that the

models neglect any physical noise beyond the switching events (see figure 1(A)) and only

attempt to solve for convergences in the long time limits. In particular, the intensity in the ‘on’

and ‘off’ states are not constant; the signal is always fluctuating. To address this issue we turn to

numerical simulations. We estimated the four exponents β, ω, γ, and z based on numerical

simulations. In simulations we add noise to the 0/1 signal (idealized model). Hence, simulations

provide additional insight on the analysis. The performed simulations are: PL: Power law; PLN:

Power law with noise; PLC: Power law with cutoff (truncated ‘on’ times); and PLCN: Power

law with cutoff and noise.

Initially, we generated time series of on/off states with random waiting times drawn

from a power law distribution ψ τ α τ= +
α α− +t t( ) ( )0 0

(1 ). The constant t0 was chosen to be

equivalent to the experimental binning time, =t 200 ms, and α = 0.63. We refer to this

simulation as PL. In order to add Gaussian noise to the realizations (PLN), the ‘on’ and

‘off’ intensities were transformed at each sampling time into normal random variables

N (0.7, 0.04) and N (0.2, 0.0064), respectively. The sampling time was chosen to be 20ms.

The variance difference reflects the increased level of noise in the ‘on’ state due to shot

noise. To simulate sojourn times distributed according to a power law with cutoff (PLC),

the ‘on’ times were drawn from a distribution ψ τ τ τ τ∼ −α− +( ) exp ( )(1 )
on and τ ⩾ t0. The

cutoff time was chosen to be τ = 15on s. Additionally, we performed simulations with both

cutoff ‘on’ times and added noise (PLCN). Once noise is added the sojourn time

distributions change and estimations of α and τon generally shift toward lower values.
Therefore we chose τ = 15on s in our simulations instead of 8.5 s as measured in

experiments.

The combination of a cutoff time and Gaussian noise has significant effects on the

zero-frequency spectrum S (0)t and the crossover frequency fc (figure S1). In these

simulations, ∼ γ−f tc with γ < 1 at short times and γ > 1 at times τ>t on, as observed in the

experimental data, and the zero frequency spectrum scales as ∼S t(0)t
0.84 as well. Table 1

summarizes the exponents found in both experimental data and numerical simulations.
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Simulation results from a power law distributed two-state model with i.i.d. sojourn times

and without noise (PL) are also shown in the table along with this modelʼs theoretical

predictions. We observe that, while basic non-stationary features of f1 noise agree with

recent theory [33], our experimental work shows that introducing noise in the ‘on’/‘off’

levels and a finite mean ‘on’ sojourn time is crucial for a complete picture of the power

spectrum of blinking QDs.

As seen in table 1, the addition of noise and cutoff on the ‘on’-time distribution modifies

the exponents in such a way that now we obtain better agreement between simulations and

measurements. Jeon et al discussed theoretically the strong influence of noise on the evaluation

of physical parameters from data exhibiting power law distributed sojourn times [38]. While

that work focused on diffusion of individual molecules in living cells, we can infer the

relevance of noise also in our blinking system. Roughly speaking, when power law sojourn

times are so broad, the system remains in a state (e.g., ‘off’) for a time that is of the order of the

measurement time. Therefore, the noise level in this long-lived state is of utmost importance for

a detailed analysis.

5. Discussion

Our data show that the power spectrum of blinking QDs crucially depends on measurement

time. We present the first experimental evidence for Mandelbrotʼs suggestion that f1 noise is

related to non-stationary signals. Our measurements were performed at the nanoscale by

measuring single particles, thus removing the problem of averaging a large number of particles,

typically found in macroscopic systems. The most common description of macroscopic f1

electronic noise, commonly referred to as the McWhorter model [10, 18], stems from the

observation that a superposition of Lorentzian spectra with a broad distribution of relaxation

times yields f1 noise. If this philosophy would hold at the nanoscale, by probing an individual

molecule, one would expect to measure a Lorentzian spectrum with a well-defined relaxation

time. This scenario is not found for blinking QDs. Instead, f1 is observed at the nanoscale.

Further, the noise exhibits clear non-stationary behavior, i.e., dependence on measurement time.

We quantify this non-stationarity with critical exponents. In particular, the aging exponent z

shows that the amplitude of the noise decreases as a power law with time. This effect should

also be found in other intermittent systems.

The key finding in our work shows that f1 power spectrum of intermittent QDs decays

with experimental time, i.e., it ages, and thus the spectrum does not converge in long time

measurements as typically assumed for standard stochastic processes. These results agree with

previous observations that analyzed blinking in semiconductor QDs as a non-stationary

process [22, 39]. The description of non-stationary βf1 noise we present is vastly different

from traditional approaches that characterize it with a single exponent. Besides β, three

additional exponents give the dependence on the measurement time. These exponents

describe aging of the power spectrum ∼ −A tt
z, the zero-frequency spectrum ∼ ω

=S f t( )| f 0 ,

and the low cutoff frequency ∼ γ−f tc . Importantly, the appearance of a transition frequency
due to a finite mean ‘on’ sojourn time, modifies the underlying exponents that describe the

power spectrum.

In an observation time t, the total power of the process is ∫
∞
S f f( )d

t
t

1
where t1 is the

lowest measured frequency. For a process with power spectrum =
βS f A f( ) with β< <1 2
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the total power diverges as time increases, due to the low frequency behavior. In contrast, if

=
βS f A f( ) and β< <0 1, the total power diverges due to the high frequency behavior of the

spectrum. We observe that in QDs, two different phenomena limit the increase of total power.

First, below the transition frequency fT, we find β < 1 due to the cutoff in the ‘on’ sojourn times

and hence the spectrum is integrable at low frequencies. For large frequencies β > 1 hence it is

integrable also at high frequencies. Second, as the observation time progresses, the amplitude of

the power spectrum decreases with ∼
−A tt
z, so that →S f( ) 0t in the limit → ∞t . Both these

findings maintain the total power finite. More precisely, if one measures for times that are

shorter than τon and hence the transition to an integrable spectrum is not detected at low

frequencies, the decrease of the spectrum with time ensures that the total area under the power

spectrum does not blow up. This will become particularly important in the limit of weak laser

field excitation and low temperatures, where τon becomes extremely large [20] and a single

regime in the power spectrum holds for all observable time scales, i.e., the transition frequency

fT is not observed within the available frequency range. We measure the total power by

integrating the PSD as defined above and indeed, we obtain a finite value which is not

diverging, i.e., it is bound, though convergence is slow (figure S2). The aging of the spectrum

ensures that the total power of the system will not diverge, hence, our observations help in

removal of a long-standing paradox of physics [3].

By resorting to numerical simulations, we find that a model that includes both a cutoff in

‘on’ sojourn times and noise in each state (PLCN model) describes more accurately the

experimental results obtained. These simulations emphasize the influence of noise within the

‘on’ and ‘off’ states and power low with a cut-off distribution. However, the value of the aging

exponent z still remains somewhat far from our experimental observations. The aging exponent

in simulations is estimated to be z = 0.31, while in experiments z = 0.12. We can speculate there

are two reasons responsible for the observed discrepancy. First, these models still assume the

existence of solely two levels. Recent experiments point to the existence of intermediate states

in the emission from core–shell QDs [40, 41]. The occurrence of multiple states has been

described both in terms of blinking processes that are faster than the time resolution of the

experiment (as is the case in our experiments) [42] and in terms of multiple physical states

within the core–shell QD [41, 43]. Nevertheless, the main aspects of the non-stationarity

described here are expected to hold for the multiple level system as long as at least one of the

states is governed by a scale-free power law distribution. Second, a different phenomenon that

could affect the measured critical exponents is noise in the QD levels that is not Gaussian. The

influence of non-Gaussian noises can of course have striking consequences in the properties of a

stochastic process.

In our approach the exponents were analyzed in a way that is reminiscent of critical

behavior, with scaling relations showing the exponents are dependent on each other and

with different behaviors below and above a transition frequency τ≃f 1T on. These results
are relevant to a broad range of systems displaying power law intermittency

[16, 17, 29, 44, 45]. Further, power law sojourn times, which is the basic ingredient

leading to the observed non-stationary spectrum in blinking QDs, are widespread and are

found in glassy systems [46, 47] and anomalous diffusion in live cell environments and

other complex systems [48–52]. Therefore, the measured exponents could be a general

feature of many noisy signals. Finally, the traditional characterization of blinking QDs with

a single exponent α is shown to be limited and to hide interesting physics described by

different critical exponents.
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6. Conclusions

Our experiments show how the analysis of noise in blinking QDs reveals rich physical behavior

described by four critical exponents. This is vastly different from traditional approaches that

characterized power spectrum of βf1 noise with a single exponent β. The exponent z describes

the aging of the spectrum with measurement time, showing a decrease of the noise level as the

measurement time increases. The exponent β describes the βf1 noise as in many previous

studies, however we find two such exponents β
<
and β

>
, below and above the transition

frequency fT. The zero frequency exponent ω describes the time average of the intensity, which

is essentially related to ergodicity and yields further information on the non-stationarity of the

process. The exponent γ describes the crossover from zero frequency to βf1 . We hope that our

work will promote measurements of exponents of βf1 spectrum, since they reveal the true

complexity of the observed phenomena.
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