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/:/+1-FREE GRAPHS:
ASYMPTOTIC STRUCTURE AND A 0-1 LAW

PH. G. KOLAITIS, H. J. PROMEL AND B. L. ROTHSCHILD

Abstract. The structure of labeled A"/+1-free graphs is investigated asymptotically.
Through a series of stages of successive refinement the structure of "almost all" such
graphs is found sufficiently precisely to prove that they are in fact /-colorable
(/-partite). With the asymptotic information obtained it is shown also that in the
class of A^/+1-free graphs there is a first-order labeled 0-1 law. With this result, and
those cases already known, we can say that any infinite class of finite undirected
graphs with amalgamations, induced subgraphs and isomorphisms has a 0-1 law.

Introduction. In this paper we investigate the asymptotic behavior of A^/+1-free
graphs, i.e., of finite undirected graphs which do not contain as a subgraph the
complete graph Kl+l on / 4- 1 vertices. In the first part asymptotic results about the
number and the structure of labeled AT/+1-free graphs are obtained. These results are
applied in the second part in order to study the labeled asymptotic probabilities of
first-order sentences on the class £f{l) of all A^/+1-free graphs. We now describe
briefly the main theorems of this paper.

Let / > 2. If G is an /-colorable graph, then obviously G cannot contain as a
subgraph the complete graph Kl+l on / + 1 vertices. But it is well known (see e.g.
Bollobas [1980]) that there are A^/+rfree graphs with arbitrarily large chromatic
number. Hence, for n large enough, the number of /C/+1-free graphs on {1,...,«} is
strictly greater than the number of /-colorable graphs. In contrast to this we show
that "almost all" Kl+l-free graphs are /-colorable. More precisely, we establish in the
first part of this paper:

Theorem 1. Let S„(l) be the number of labeled Kl+l-free graphs on {1,2,..., n)
and let Ln(l) be the number of labeled l-colorable graphs on {1,2,..., n }. Then for any
polynomial p(n) there is a constant C such that for all n

S„(l) < L„(/)(l + C/p(n)),

and hence

— \s,(/)|
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The special case of Theorem 1 for / = 2 and p(n) = n was proved in Erdos,
Kleitman, Rothschild [1976], who also showed that

»-»\ log5„(/) /

In addition to the asymptotic characterization given by Theorem 1, we obtain
detailed information about the structure of almost all Kl+l-free graphs. For exam-
ple, it turns out that almost every A^/+1-free graph is uniquely /-colorable and each
color-class has size at least n/l - n/\ogq(n), where q(n) is some function with
Yim„^xa(n) = so-

Let Jf" be a class of finite structures with universes initial segments {1,..., n) of
natural numbers and assume that Jf is closed under isomorphisms. If <f> is a
sentence of first-order logic, then the labeled asymptotic probability jti(<|>) of <j> on Jf
is given by p.(4>) = limn _x a„(<£) (provided this limit exists), where iu„(<f>) is the
fraction of labeled structures of cardinality n in Jf satisfying <f>. The almost sure
theory Il( Jf) of the class Jf is the set

n(jT)= {<>: is a first-order sentence and |ti(4>) = lonJf"}.

We say that the class Jf" has a first-order labeled 0-1 law if n($) = 0 or jx(<f>) = 1 on
Jf for every first-order sentence <f>. This is equivalent to asserting that H(Jf) is a
complete theory.

In the second part of this paper we use Theorem 1 and the additional structural
information obtained in its proof, to study the labeled asymptotic probabilities of
first-order sentences on the class of A^/+1-free graphs. We prove

Theorem 2. Let £f{l) be the class of labeled Kl+l-free graphs. Then the labeled
asymptotic probability n(^>) on S^(l) of any sentence 4> of first-order logic is either 0
or 1.

Thus the class S(l), I > 2, has a first-order labeled 0-1 law. Moreover we show
that the almost sure theory II (5(/)) is an to-categorical, decidable but not finitely
axiomatizable complete theory. The countable model D(/) of the almost sure theory
TL(y(l)) is an /-colorable graph with uniquely determined parts and has the
property that its finite submodels are exactly the finite /-colorable graphs.

Fagin [1976] showed that a labeled 0-1 law holds for the class 'S of all finite
undirected graphs. Moreover, the almost sure theory Il(^) is ocategorical and it
turns out that its unique countable model is Rado's graph (Rado [1964]). Compton
[1984] investigated 0-1 laws for various classes of finite structures which arise
naturally in combinatorics. In particular he showed that a labeled 0-1 law holds for
the class S of finite equivalence relations. Each of the classes <$"(/) (/ > 2), ^ and S
is a family of finite undirected graphs which has the amalgamation property and is
closed under submodels. A complete classification of all such families of undirected
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graphs is given in Lachlan-Woodrow [1980]. Using this classification together with
Theorem 2 and the 0-1 laws obtained by Fagin and Compton we establish

Theorem 3. Let Jf be any infinite class of finite undirected graphs having the
amalgamation property and closed under induced subgraphs and isomorphisms. Then
the labeled asymptotic probability pt(<t>) on K of any sentence <j> of first-order logic is
either 0 or 1.

The results of this paper have been announced in Kolaitis-Promel-Rothschild
[1985].

1. The asymptotic structure of K,+ l-hee graphs. By a graph we mean a set
equipped with an irreflexive and symmetric binary relation. All graphs we consider
are labeled. For standard definitions and basic facts about graphs see, for example,
Bollobas [1980].

Let V be a set of m vertices, e.g. V = [1,..., m). Then the set of all graphs on V
containing no K/+l as a subgraph is denoted by ^,,(0- The number of graphs in
ym(l) is denoted by SJl), i.e. SJl) = \^Jl)\. Furthermore, let &J1) be the set of
/-partite (or equivalently /-colorable) graphs on V and Lm(l) = \£fjl)\. The main
theorem proved in this section is

Theorem 1. Let / > 2. Then for any polynomialp(n) with positive leading coeffi-
cient there is a constant C = C(p(n),l) such that for all n

S„(/) < L„(/)(l + C/p(n)).
We fix / > 2 throughout the proof of Theorem 1. Hence, it will not be confusing

to write Sm and S?m, Lm and £Cm resp., instead of Sm(l) and yjl), Lm(l) and
Sfjl) resp.

Convention: All logarithms which occur in this paper are logarithms to the base 2.
Obviously, ■£?„, c Sfm and therefore Lm < Sm. In the sequel we will consider

3/ — 1 subclasses of £r°m which exhaust ■9'm\^'m completely and, additionally, each
of them has only a 'small' intersection with 3?m. This will provide for the estimate
for Sn(l) by showing Sn(l) ~ L„(/) is small relative to Ln{l).

In the first 2/ - 3 of these classes are all those graphs which have a vertex v
having among its neighbors no complete (/ — l)-partite graph with parts of size at
least q(m) = q,_2{m), where q(m) satisfies \imm_^xq(m) = oo. More precisely: the
class 880 will contain all those graphs in <$^7 which have a vertex having only a few
neighbors, say less than q0(m). In the classes j^ U 981, j = 1,...,/— 2, are all
graphs not in 38'0 U (U/I,1 j/, U 38^ having a vertex whose neighborhood does not
contain a complete (j + l)-partite graph with each part having size at least qj(m).
These classes will be discussed, step by step, in the Lemmas 1.3 to 1.7.

Then for every graph in £fm\stf\J 3$, where s#= \}s^i and 88 = U^,, every
vertex has a Q-set in its neighborhood, i.e., a complete (/ — l)-partite graph
Q = QY U ••• U Qi ,, where each part Qt; has size q{m). For such a (>set Q = Q(v)
of v we define the R-set R = R(Q) to be the set of all vertices which have in each of
the /- 1 parts of Q at least one neighbor. The classes <€, 2 QSfm\(s?\J 38)
contain all graphs which have a vertex v with Q-set Q and R-set R such that R does
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not contain about 1// of all vertices, i.e., either \R\ > m/l + 4m or \R\ < m/l -
m/\ogq(m) (provided that m was chosen sufficiently large). Intuitively, R will serve
as one part of an /-partite graph, viz. the part to which v belongs. The other / - 1
parts are represented by the / - 1 parts of Q. The classes ^ and 2 will be
investigated in Lemma 1.8, and Lemma 1.9.

Then, in the class £k, for k = 1,..., / - 1, we put all graphs not contained in one
of the former classes and having a /c-clique which is not contained in some
(k + l)-clique. Finally, the class §, contains all graphs which have an /-clique, say
K = {v1,...,vl} such that for each vi there is a Q-set with a corresponding R-set R/
so that the /?,'s do not cover almost all vertices, i.e., |{jc£ V\K\x £ Ui\,}| >
m/\og{2)q, for m large enough. From this immediately follows that every graph not
in £ = Uj=1 £, has the property that whenever vl and v2 are adjacent vertices with
R-sets Rx and R2, then Rx and R2 almost do not intersect, i.e., \RX n R2\ <
2w/log<2)<7.

The graphs in &>J\s/U 38 U Wu S> U £, are called EQR-graphs. We show in a
series of steps (Lemma 1.15-Corollary 1.20) that every EQR-graph is already
/-colorable, i.e., the 3/ - 1 classes given above cover ym\3?m completely. In fact,
every EQR-graph is /-colorable, where the size of each color class is at least
m/l — m/\ogq(m).

In every step we show that the class under consideration is small, i.e., we estimate
its size relative to Sm_i for some / > 1. To prove Theorem 1 we combine these
estimates with the growth rate of Lm and with induction on n to show that each
class has fewer than (C/(3l - l)p(n))Ln elements and therefore is negligible
relative to S£n.

A similar method of proof was used by Kleitman and Rothschild [1975] and
Erdos, Kleitman and Rothschild [1976] in the asymptotic enumeration of partial
orders and K-hee graphs, respectively.

We start the proof with giving an estimate for the growth rate of Lm:

Lemma 1.1. For m sufficiently large we have the following bounds on Lm:

-l\ogm + wlog/ + ^)^-< logL„, < mlog/+(7j^-

Proof of Lemma 1.1. For the upper bound we observe that we can construct all
/-partite graphs with m vertices by partitioning the set V into / parts (at most lm
ways) and then connecting the parts (at most 2I<'x<Jt' ways, where xi is the size of
the /'th part, 1 < / < /). Since L,<7x,x7 < (2)m2/l2, we have

logL„,< /Ml0g/+^)y.

For the lower bound on Lm we consider a subclass of the /-partite graphs, which
we call special /-partite graphs. These are /-partite graphs with / — 1 parts of size
(m — e)//, where e is the remainder when m is divided by /, i.e., £ = l(m/l — [m/l]),
and the remaining part of size (m + (I — l)e)/7. Notice that the size of e is bounded
by/.
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Kl+ ,-FREE graphs 641

We derive a lower bound for the number of special /-partite graphs. This is done
by first counting all special /-partite graphs, but with some possible duplications,
and then subtracting an overestimate of the number of duplications.

All the special /-partite graphs are constructed as follows: first the vertex set V is
partitioned into / classes. This can be done in

(m \
m — e m — e   m +(l — l)e—r,...,—r, - J

ways. Then the connections between the parts are made. This can be done in

2V     '    '  ^   2   M ' /V     '    ' = 2(/-l)(m2-*2>/2/

ways. Hence, we get in total at most

(m \
m - e m - e    m +(/- l)e Wi-^m2-,2)/!!

I     '•••'      /     ' I J
special /-partite graphs. Of course, any special /-partite graph is counted multiply, at
least /! times due just to relabeling the parts.

Now we consider those graphs which are counted even more often. The only way
this can happen is if a graph can be obtained from two different partitions of V into
/ — 1 parts of size (m — e)/l and one part of size (m — e)/l + e. We overestimate
the number of these graphs by forming all possible pairs of distinct partitions, and
for every such pair finding an upper bound for the number of graphs consistent with
both partitions, that is, graphs such that no part of either partition contains two
vertices joined by an edge.

Let Av...,Ai and £,,...,5, be two distinct partitions with |y4,-| = |fi-| =
(m - e)/l for i, j * / and \A,\ = \B,\ = (m - e)/l + e. Furthermore, let Xtj = At
n B- and x, = \X^\ for all 1 < i, j < /. Then we have the following two immediate
observations:

Since the partitions Al,...,Al and Bl,...,B/ are distinct, there exist i, j such
that

either i, j ¥= I, and 1 < xtj < (m - e)/l or at least one of /, j
^ ' equals /, and 1 < xj} < (m - e)/l + e.

From the definition of the x,  we have that

(m - e ...     ,—7—, dj<l,

—-— + e,    \ij = l.

!m - e— , rf,</,

^ + £,     if/-/.
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Since an edge cannot join two vertices of Ai or 2?., the number of graphs
consistent with both partitions is 2a, where

a =  9"   1^   xijxhk-
z i*h

We claim that

,3,      a.L^m!_^ + df(£ jj + f(f4).
L / -1 \ j=1      /     j=1 \ / = 1      /

To see this we rewrite 2a as follows:

1*/;

= E ■*„   E *** -EL *v*rt - E E *ijXkj + E *,7*,,
\/.j l^h.k ' i    j.k j    i.h i.j

= -2-E(e^)2-E(E^)2 + E4

= m2 - 2(1- 1)(^-^)2 - 2(^-^ + e)2 + E */*,   by observation (2)
i.j

-^™2-2(^)£2 + Ue(E4) + e(E4) .

which proves (3).
The pair of partitions Ax,..., At and Bl,...,B, can be chosen by picking the A",

in an appropriate way.
We now distinguish two cases.

(4) All xu satisfy either x(/ < I2 or x,7 > m/l - I2.

(5) Some xu satisfies I2 < x,j < w// - /2

First we consider (4). Here we must have exactly / of the x{j which satisfy
xl} > m/l - I2. This follows immediately from (2) for m sufficiently large, say
m > I5. Hence, the number of ways of choosing the x,y is in this case at most

I2'-      E        /l5/2./,,_„/,,.h,l   where £ /,+ E/,7 = m.
/.</2 V ' 1-1 j=\

it,> m/l- I'
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This number is obviously smaller than

h^m/l-l-

< w'5/"',   for m sufficiently large.

We get that in case (4) the number of graphs which are consistent with the
partition induced by the Xtj is at most m' lm2a, where by (3)

By (2), each summand E'=1.x2 and £'=1jc2 is maximized when exactly one of the
terms in it is nonzero. By the requirement (1) that at least one xt, satisfies
1 < xtj < (m — e)/l (1 < Xjj < (m - e)/l + e respectively) we know that there
exists /', 1 < / < /, such that either

i*l,   and     £ 4<(^-p-l)2 + l2

or

/ = /,    and     £ 4<(^-^ + e-l)2 + l2.
7=1

Hence we get, again using (2):

l|l *;)<</-1)(^(^ H! - >m "
w2      2m      / — 1   -,     2        _      m2      w

<-- — + ~re +7e + 2<-"T'
for w sufficiently large.

Thus the number of graphs in case (4) is less than

mliim2(l-2)m2/2l-(l-lU2/l+m1/2l-m/21 < yU~ l)m2/2l + m log/-m/4/

for m sufficiently large.
Now we consider the case (5). Since the Xu's partition the vertex set V there are

at most l2m many choices for them. Hence the number of graphs in case (5) is at
most l2m2a, where a is as in (3). From (5) we see that there exists /, 1 < / < /, such
that either

/#/,   and     i^^i^-L-iA'+^f
7-1 V '
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or

/ = /,    and     £ xf^t^L-^ + e-rf+O2)2.
7 = 1

So we get in this case

E f £ 4) < ('- l)(^)2 +(^ + ef - 2l(m - e) + f + /4i = i\./=i       / \     j     ;       \     *
w2     „,        / — 1   7     „,       „ l4     w2< — - 2/w + —— e2 + 2/e + 2/4 < — - lm,

for m sufficiently large.
Hence the number of graphs in case (5) is less than

i2m2(l-2)m2/2l-(l-\)e2/l+m2/2l-lm/2 < y(l- l)m2/2l-lm/4

for m sufficiently large.
Putting (4) and (5) together we get an upper bound for the number of (nontrivial)

duplicates, i.e. of graphs, which can be obtained from two different partitions of V
into / — 1 parts of size (m — e)/l and one part of size (m — e)/l + e.

This upper bound is

2</-l)»r/2/+mlog/-m/4/   1   2<'-l)'"2/2/-/'n/4 <- 2('_1)'"2/2/+'"Iog/-m/5/

A lower bound for the number of special /-partite graphs is therefore

^ m-E m - E     m - E \')(l-l)m2/2t-U-l)e2/2I _ <)</-l)m2/2/+mlog/-m/5/"■[I-/-.— -'-T- + T
Using Stirling's formula, we can bound the multinomial coefficient from below by
l"'m~l/2. Hence, we have at least

2mlog/-(//2)logm-/log/+(/-l)»r/2/-(/-l)f2/2' _ 2</_ 1>">2/2'+ "> log'- m/51

>   2</-l)»'2/2'+'"log/-/logm

special /-partite graphs, provided that m is sufficiently large. This proves Lemma
1.1.

Corollary 1.2.
log(L„,/Lm + 1)< -(/-l)m//+(/+l)logm

for m sufficiently large.

Now we consider, step by step, five different families of subclasses of ■¥m + x and
estimate the size of each subclass relative to some £fm+l_t where / > 1. But first
recall the following estimate which can easily be derived from Stirling's formula:

Mem) < "(«l°g« +0 - £)M1 " e))m,
where 0 < d < e < 1/2, for m sufficiently large depending on d. We put b(e) =
-(eloge + (1 - e)log(l - e)). Observe, that b(e) has its maximum at e = 1/2 and
its minimum at d.

For the remainder of the proof of Theorem 1 let U be a set of m + 1 vertices.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



K;+1-FREE GRAPHS 645

Lemma 1.3. Let k be an integer such that 1 < k < / — 2 and let c = c(m) be an
integer such that c = o(m) and \/c = o(\). Furthermore let e > 0 be such that
b(e) = 1/4/. Then let s/(U,k,c) be the set of all graphs in Sfm + 1 which contain
pairwise disjoint sets P1,...,Pk each of size c such that the set

Tk= I x e U\ U P,■: x is connected to at least ec vertices in each Pt >

satisfies

\Tk\<jjUWp>-i-i
Then

,    \s/(U,k,c)\     l-\, 1log—t;-< —-—kcm - —cm.
^m+l-kc ' ll

Proof of Lemma 1.3. Every graph in s/(U,k,c) can be constructed as follows.
First choose the k sets P1,...,Pk (at most (")* < mck = 2c*logm ways). Then
choose edges in Uf_1/>; (at most 2k~c" ways). Then choose a AT/+1-free graph on
t/\Uf=i Pj (Sm+l_kc ways). Now connect Uf^.P, to Tk (at most 2c*|r*1 ways).

Finally, connect Uf=1 P, to U\ (\Jk=1P, U 7^): Do this by first choosing for each
x e t/\(Uf=1/), U Tk) one of the P,'s with at most ec edges to x. There are /c
choices for the Pi and at most (jC.)c ways to connect x to this T3,. Furthermore, there
are at most 2ik~l)c ways to connect x to the other P''s. The number of elements x in
f/\ (Uf=1 P, U F^ism + l -te- \Tk\. Thus, the total number of ways to connect
U*_iP; to U\ (U?„, P; U 7A) is at most

A:( c )c2(A'_1)'' ",+1"/t<"|7'i '^ 2(6(e)c+lo8c+lo8*+(*_15cX'«+i-*c-|rj)

This gives

log1     v n < cA: logm + A:2c2 + ck\Tk \
^m + l-kc

+ (b(e)c + \ogk + logc +(k - \)c)(m + 1 - kc -\Tk |)

= cA:logm + A:2c2 +{m + 1 - kc)(b(e)c + logk +(k - l)c)

+ (c- b(e)c - logc- logA:)|rJ.
Since |TA.| < 5(m + 1 - kc)/4l and \Tk\ is multiplied by a positive factor in the
expression above, for m sufficiently large, then we have

^\A(U,k,c)\ ^ \b{e)+{k - i) +(i _ b(e))^\mc + o(mc)

= y    4/    b(e) + k-v~jcm + °(cm)

1,      4/" 5   ,   t/ \\ //- 1 ,      4*-4/+5+'l\< [*-^J— + b(e)jcm a [—7—^ + -^-|«w

< —:—kcm — —.cm,    for m sufficiently large.
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Lemma 1.4. Let 0 < k < / — 2 and let c = c(m) be an integer such that c = o(m)
and \/c = o(l). Furthermore, let e > 0 be such that b(e) = 1/4/. Then let 38(U, k, c)
be the set of all graphs in ym + 1 which have a vertex v and k disjoint sets Px,..., Pk
each of size c with the following properties:

(a) All vertices in Uf_, P, are adjacent to v.
(b) The set Tk = {x e U\ U,*_i Pt: x is connected to at least ec vertices in each P,}

satisfies

0) \Tk\>^U\[jP,
,= i

and

(2) |7;ni»|<c

where T(v) is the set of all vertices which are connected to v.
Then

,     \38(U,k,c)\      I-I 1log-^-rm-Jlm,

for m sufficiently large.

Proof of Lemma 1.4. Every graph in 38(U,k,c) can be constructed as follows:
First choose v (m + 1 ways). Then choose an appropriate AT/+1-free graph on
U\{v), i.e., a graph satisfying the conditions above on the P, and Tk (at most Sm
ways). Now connect v to U\{v): First choose Pv...,Pk such that Tk satisfies (1)
(at most ("')k ways). By (2), v can be connected to Tk in at most (™)c ways. Finally,
connect v to U\ (Uf=1 P, U Tk). By (1) there are at most

2(4/-5)(m-Arc)/4/-5/4/ <  2<('- D/'- l/4/)m

possibilities for this. This gives

,     \38(U.k,c)\      .    ,         ,,     ,,      ...    /m\     ,           //-I       1\log1—^-^<log(m + l)+(/c+ l)log(7) + logc+^—-^jm

/- 1 1
< —j—m - —m,

for m sufficiently large.
Next we combine Lemma 1.3 and Lemma 1.4 to get some structural information

about those graphs in y„, + 1 which are not in U'^L2 s#(U, k, c) U UA=20 38(U, k, c),
where c is chosen appropriately. For this purpose we need an immediate conse-
quence of the following theorem due to Bollobas and Erdos [1973] (cf. Bollobas
[1980, p. 328]).

Lemma 1.5. For any e, 0 < £ < 1, there exists an N such that if B is a bipartite
graph with classes 5, and B2, with N = \BX\ = |B2|, and if B has at least eN2 edges,
then B contains as a subgraph a complete bipartite graph with classes of size
t > 8 log TV, where 1/8 = 1 - logE.
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Let log(0)(.x) = x and let log(5)(x) = log(log(i_1)(x)) denote the 5th iteration of
logx. Notice that, for TV sufficiently large, the size t of the classes guaranteed in
Lemma 1.5 is larger than log(2)(7V). From Lemma 1.5 we immediately derive

Corollary 1.6. Let 0 < e < 1 and h > 0 be given. Then there exists N such that
the following is true: Let G be a graph with vertex-set Q0 U Qx U • • ■ U Qh, where the
Qi are mutually disjoint {but not necessarily independent sets) and \Q0\ = \QX\ = ■ • •
= \Qh\ = N. Suppose that for each u e Q0 and each i = 1,..., h the number of edges

from u to <2, is at least eN. Then there are subsets Q'0, ...,Q'h of Q0, ...,Qh
respectively, such that \Q'\ > [log(2'I)(yY)l for every i = 0,..., h, and such that Q0 is
completely connected to Q\\ that is to say all vertices of Q'0 are adjacent to all vertices
ofQ'i fori = 1,2,. ..,h.

Proof of Corollary 1.6. Fix 0 < e < 1. For h = 0 the statement is trivially
true. Choose TV such that Lemma 1.5 can be applied to bipartite graphs with parts of
size flog(2'1~2>(Ar)l and let G be as required in Corollary 1.6. Assume that there are
subsets Q'Q' c Qq, and Q\ C Qt for i' = 1,..., h — 1 such that each of these subsets
has cardinality at least flog(2/'~2)(Ar)|, and Q'0' is completely connected to Q\ for
each / = 1, ...,/> — 1.

Note that there are at least £|2o'II£?aI edges between Qq and Qh. Hence, the
average number of edges between Qq and a subset of Qh of size \Q'0'| is e\Q'0'\2. Then
by Lemma 1.5 there are subsets Q'0 c Q'0' and Q'h c Qh with

\Q,\=\Q'h\>W2)\Q'<;\\>W2h\N)\
such that Q'0 is completely connected to Q'h. Thus Q'Q, ...,Q'h fulfill the require-
ments of Corollary 1.6.

Lemma 1.7. For m sufficiently large (depending on I), any graph G in

Pm+i\ f U *(u,k,\log<kI-k + 2Km)])\ul'\J ̂ (l/,*[log<*2-* + 2>(m)l)J

has the following property.
For every vertex v in G the set T(v) of neighbors of v contains a set Q — U'l}Q,,

which induces a complete (I — \)-partite subgraph with parts Qx,..., Q/_i, such that

\Q,\>\\ogu2-v+4)(m)\ fori = 1,...,/- 1.

Proof of Lemma 1.7. Let v be an arbitrary vertex of G. By the definitions of the
classes jtf(U,k,c) and 38(U,k,c) for k = 0 and c = |log<2)(m)| we know there
exists a set Pu of size flog<2)(w)l in T(v).

We continue by induction on k. Suppose for some k, 1 < k < / — 2, we have sets
Plk, P2k,..., Pkk with the following properties:

(1) the P,A.'s, 1 < /' < k, are pairwise disjoint,
(2) Plk c T(v) for every i = l,...,k,
(3) |/>(-*|=[log<*2-* + 2>(m)] for every i = \,...,k,
(4) for every pair i # /, Pjk is completely connected to Pjk.
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Since G is not in s/(U, k, \\og(l<1~k + 2)(m)\). we know that for

Tk= l*e U\ U Pit- |T(jc) nP/t| > e|P,J, for each/,1 </< k\,

where e > 0 is such that b(e) = 1/4/, we have

5 k
\Tk\> jjU\ \JPik.

i=i

Since, furthermore, G is also not in 38(U, k, \\og(k'~k + 2)(m)\) we have that

\Tkn T(v)\ >[log<*2-*+2)(w)1.

Now let Pk+l be any subset of Tk n F(v) of size |log(A2"* + 2)(m)|. Applying
Corollary 1.6 with Q0 = Pk + X and Q, = Pik for i = 1,.. .,k we get subsets Pk + iik + 1
c Q0 and P, k + x c Q(. for i = 1,..., k so that for i = 1,..., k we have

l^+.l >fiog<2A)(le0l)l >fiog(2A)0oga2-*+2,(^))l
= [log«*+1>2-<*+1>+2)(m)],

and, in addition, Pk + X_k + X is completely connected to P, k + x for / = 1,..., /c.
This gives us the step from k to k + 1. Continuing until fV + 1 = / - 1 we obtain

a subgraph with vertex set Q = U'l} (2, where (3, = Pi.k + \> » = 1,...,/— 1, and Q,
is completely connected to Qy, i =£ y. We now observe that any such subgraph is an
induced complete (/ — l)-partite subgraph of G, because any edge in one of the
parts Qt would create, together with the vertex v, a Kl+l, which is excluded for

For a vertex v, a Q-set in r(t;) is a set which is the disjoint union of sets Qt,
1 < i < / — 1, where |g,| = log(/"~3/+5)(»i) , for every /' and Q induces a complete
(/ - l)-partite graph with parts Qr The structural information given by Lemma 1.7
is that whenever we consider a graph G in

K, + i\   E ^(f/,/t,flog<*2-*+2»(m)l)u   \j 38{u,k,\\o^k2-k + 2\m)\)
. k■ — 1 k=0

then every vertex of G has a g-set. In fact, since in a Q-set the size of each part need
only to have size   log(/2_3/+5)(w) , we know moreover that the property of having a

Q-set is quite robust. More precisely: Let q = q(l, m) = |log('"_3/+5)(w) . Then
Lemma 1.7 assures that there are at least (2"q ) many Q-sets for every v in G.

For a Q-set Q of v define the P-.s<?r R(Q) by

R = R(Q) = {x e U\{v}\Q\V,3y e Q, such that j e T(x)}.

Observe that P c U\T(v), because an edge from v to R creates a Kl+X.
In the next two lemmas we give (relative) estimates for the size of those classes of

graphs which contain a vertex v and a Q-set Q such that the size of the correspond-
ing P-set is significantly different from m/l.
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Lemma 1.8. Let ^(U) denote the set of graphs in &?m + x containing a vertex v with a
Q-set Q = \J\~\Qi such that \R(Q)\ > m/l + ml/2. Then

,     \V(U)\       I- I m1/2log-S^ K-r-m-—,

for m sufficiently large.

Proof of Lemma 1.8. Construct all graphs in #(£/) as follows: Choose v (m + 1
ways); then choose a suitable graph on U\ {v}, i.e., a graph which can be made to a
graph in ^(U) by adding v in an appropriate way (such a graph can be chosen in at
most Sm ways); then find a Q-set Q = UjljQ, (at most (™)'~l ways); then connect
v to the remainder of U. Since v cannot be connected to R, there are at most
2(/-i)m//-m    choices. This all gives

log-*—L-L ^ log(m + 1) +(/ - l)<7logm + —-—m — m1/2

I - 1 m1/2

Lemma 1.9. Let !3(U) denote the set of graphs in £fm+x containing a vertex v with a
Q-set Q = \J'iZ\Qi such that \R(Q)\ < m/l - m/\ogq. Then

for m sufficiently large.

Proof of Lemma 1.9. Construct all graphs in 3){U) as follows: Choose v (m + 1
ways); then choose Q = U'ljQ, (at most 2('~1)m ways); then choose a graph in
^m-,/-i)„ on U\({v) U Q) (at most Sm_a_X)q ways); then find an P-set R(Q) (at
most 2"' ways). Now connect i> to U - (R U Q) (at most 2"' ways); and finally
connect Q to U - ({v) U Q). There are at most 2|/?l</"1)<? ways to connect R to Q.
To connect an element x e\ U\({v} U Q U R) lo Q choose at most / - 2 of the Q,
(at most 2' ways) and connect x to these Q, (at most 2('~2)q ways). There are at
most (2' • 2<'-2>«)<m-l*"-</-1W ways to connect Q and £/\({t;} U Q U P). To-
gether this gives, for m sufficiently large,

I °?){ll\ I
log'    v    ^'   < log(m + l)+(/- \)m + 2m +(/- \)q\R\

^m-(l- l)q

+ (l+(l-2)q){m-\R\-(l-l)q)

< 2(1 + \)m +(/ - 2)^m + q\R\
(ffl YYl     \

y - i^)

(/— 1) qm        .,,     ,.
<-r-^om - j1— + 2(1 + l)m/ logg
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Lemma 1.10. Let Sk(U), 1 < k < /, denote the set of graphs in y„,+x having k
vertices V = {vx,...,vk} forming a Kk such that

(1) V is not contained in any (k + 1 )-clique Kk +,

and such that for each u, there is a Q-set Q(i) for which the corresponding R-set
P, = ^(Q(')) satisfies m/l — m/\ogq < |P,| and moreover for these Rt,  the set
T = {x e U\ V\x <£ Uf=1P,} satisfies

(2) \T\ > m/log(2)<7-

Then

.     \Sk(U)\       l-\    , mlog' n  < —— mk - -.-,
Sm_k + X I \ogq

for m sufficiently large.

Proof of Lemma 1.10. Construct all graphs in £k(U) as follows. First choose
V = {vx,...,vk} (at most (m + 1)* ways). Then choose a graph on U\ V, which
can be made into a graph in Sk(U) by connecting the /c-clique V in an appropriate
way. Such a graph can be chosen in at most Sm_k + X ways.

Now choose appropriate Q(/')'s in U\ V (in at most m(l~i)qk ways), and finally
connect V to U\ V. For each 1 < h < k and each choice of 1 < ix < ■ ■ ■ < ih < k
let T     . = R. Pi • • ■ r\R, . Note that

r=f/\fu   U   Th.ihuv).x i> '..'•» ;

The number of ways to connect V to 7/    ,•   is at most 2(k~h)^Tn   '*'. 7" can be
connected to K in at most (2k — l)|r| ways, by assumption (1).

Thus V can be connected to U \ V in at most

(2k - l)17"^*-^..Ir'..".I(*-A)

ways. For the sum above we have

E    E  |t;.J(*-*)-*(x:    E  |u.j) - £    E  In.,>

= ̂ |(/-(ru v)\- £ |pj

<*(m + i)-ife|r|- klZ-rZL.)\ l       logq]

= tlZ±mk-k(\T\-l) + ^-.I log q
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Thus the number of connections is at most
2ir|log(2A-l) + (/-l)mA//-A;(|n-l-m/log<7)_

These inequalities give

logl-**^ ^ k\og(m + l)+(/- l)kq\ogm +|r|log(2* - 1)
"->m-k+\

+ ̂ mk-k\T\+k + P^-l log^
/—1    ,     1^,1/,      ,    ,^l.     ,w     2km      /— 1    , m< —i—mk -\T\(k - log(2A - 1)) +-.-< —z—mk - -.-,/ '     \ogq I log q

for m sufficiently large.   □
Let G be a graph on U such that for every vertex v there is a Q-set Q and an

P-set P = R(Q) satisfying
m        m       | _ |     m , ,-,
/        log <7 /

Note that it k < I, then

IPi > m-r»i — kml/2 > -:—,
/ log<2)<7

for any /c-clique of vertices V and m sufficiently large. So assumption (2) of Lemma
1.10 is automatically satisfied for such a G and V. Hence

(1.11) If k < I, and if G is not in Sk(U), and if m is sufficiently large, then
assumption (1) of Lemma 1.10 must fail for every /c-clique of vertices V and,
therefore, every /c-clique must be contained in an (k + l)-clique.

(1.12) If k — /, then assumption (1) is automatically satisfied for every /-clique of
vertices V. Hence if G is not in <?,(£/) we have |T| < m/\og{2)q, for every /-clique V.

MoreoverU'=, P, U P = t/\ Kand

the numbers of elements in more than one of the P,'s is at most
YYl 2 YY\

(k — 1) + /m1/2 -I-—— <-——    for m sufficiently large.
log* 'q     log' 'q

In particular, in this case (k = I) we have for i #y: |P, n P -| < 2m/log(2V
Definition 1.13. We call a graph G in

rm+i\   U^(^*.flog(fa-*+2)(m)])
_A. = 1

U    (J ^(w.Aflog' *2-*+2)(w)l)

u«'(t/)u^(t/)u    U ^(f/)|

an EQR-graph.
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In particular, for every vertex ;; in an EQR-graph G there are sets Q'x,..., Q\_x
each of size at least 2q~1 so that all choices of QX,...,Q„ where Q, c Q\ and
|Q,| = q = |log(/2~3/+5)(m)|, i= l,...,l- 1, form a Q-set Q for which the corre-
sponding P-set P = R(Q) satisfies:

m        m       , _ |     m , ,,
/        log ^r /

Lemma 1.14. Let G be an EQR-graph. Let v, v' be adjacent vertices in G, let Q, Q'
be Q-sets of v, v' respectively and R, R' be the corresponding R-sets. Then

\R n R' | < 2m/log<2)<?   for m sufficiently large.

Proof of Lemma 1.14. From (1.11) we see that v, v' must be part of a K3
(choosing k = 2) and thus part of a K4 (choosing k = 3 in (1.11)), and so on, until
we know that v, v' are part of a K, for m large enough. Then, by (1.12),
\R n P'| < 2m/log,2V

Next we derive some properties of EQR-graphs, which enable us to show that
EQR-graphs /-colorable.

Lemma 1.15. Let G be an EQR-graph. Then G has the following property for m
sufficiently large.

(A3) For every xx,...,X/ forming a Kt and every w there is an i, 1 < / < /, and
there are vertices yx,..., yi-\, u,zx,. ..,zl__x such that u is different from the yk's and
from the zks, the yks and the zks each form a Kt_x, xt and u are connected to each yk
and u and w are connected to each zk. (See Figure 1.)

Xi^"""""^      -—x,

Y^^b       Ki-i

(V/Vy       Ki-i

Figure 1
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In this case we say that xt and w are connected via a double spindle through u. Note
that if w = u and the yk's are the same vertices as the zks then the double spindle
degenerates to a spindle.

Proof of Lemma 1.15. Let xx,...,x, be a ^-subgraph of G and let w be an
arbitrary vertex in G. Let Q(0), Q(i), /'= 1,...,/, be Q-sets of w, xx,..., x, resp.,
and P(0), R(i), i = 1,...,/, be the corresponding P-sets.

Since G is an EQR-graph it follows from Lemma 1.14 that

Un/\ 'w       I l\    2m

Furthermore, we have

11       /       log q

Hence, there exists an i, 1 < / < /, such that |P(0) n R(i)\ ^ m/l2 - 3ml/\og(2)q
for m sufficiently large. Then for every u e\ R(Q) n R(i) the vertices x, and w are
connected via a double spindle through u.   □

For later use we derive the following corollary.

Corollary 1.16. Let k > 0 be an integer. Let G be an EQR-graph and vx,...,vk
be vertices of G. Then the subgraph of G induced by U\{vx,...,vk) still has the
property (A3), provided that m is sufficiently large depending on k.

Proof of Corollary 1.16. Let xx,..., x, and w be vertices in U\{vx,. ..,vk)
such that xx,...,x, form a K:. From Definition 1.13 of EQR-graphs it follows that
there are Q-sets Q(0), Q(l),..., Q(l), associated with w,x,...,x, respectively, which
are all disjoint from vx,..., vk. Since we know that there exists /, 1 < i < /, such that

\mnR(i)\>f2--^-/        log' >q

in G, we conclude that there is a vertex u e (P(0) n R(i))\{vx,...,vk) and thus x,
is connected to w via a double spindle through u.    □

Lemma 1.17. Let G be an EQR-graph. Let x,u,w £ U, let Q(x),Q(u),Q(w) be
Q-sets of x, u,w respectively and let R(x), R(u) and R(w) be the corresponding
R-sets. Assume that x and w are connected via a double-spindle through u. Then

,   , ,    . |     m        5/2m
\R(x) C\ R(w)\^ —-——   for m sufficiently large.

1      log' 'q

Proof of Lemma 1.17. The argument is basically that the P-sets associated with x
(with w respectively) and with u must be almost the same, since they are both almost
disjoint from the P-sets associated to the / - 1 vertices in the spindle joining them.
Transitivity then gives that the P-sets of x and w are almost the same.
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More precisely: Let yx,...,y,_x form a K^x and let x and u be connected to
each of the yk. Let Q(i) be a Q-set of v, and R(i) be the corresponding P-set, for
/ = 1,...,/- 1. From Lemma 1.14 we know that in R(x) there are at least

m _    m       , .    2m m        2/m
/ ~ log<7~(   "   )\0g^q>T~ iog(2)9

vertices which  are not  in U-l}P(/').  Similarly R(u)  contains  at least   m/l -
2/m/log'2) q vertices not inU'l1P(().

But

u- u «(o <«+1-f(/- i)[t-t^I -f'; M-^-",-i [ I /      log^J    I   2   hog'V
m        / m

< —r H-——    for m sufficiently large.
'       log' 'q

Therefore

... ...     m 4/m /2m m        2/2m
i?(x)n«(«)|>--—p-—p^y-—r.

'       log' '<?      log' 'g       '        log' 'q
Analogously,

i ^/   \      ^/   \ i     w       2/2m\R(u) n R(w)\> T - ——:
1       log' 'q

Combining this and |P(«)| < m/l + ml/1 we obtain

i „/   x      ,w    , i     m        4/m , /,\R(x) n P(w) I > y - —-— - m1/2
'       log' ' g

m        51 m> -j-—    for m sufficiently large.    D
'       log''^

Lemma 1.17 yields immediately

Corollary 1.18. Let G be an EQR-graph. Then G has the following property for m
sufficiently large:

(A4) If H is a graph of the following type, then H is not a subgraph of G: H has
vertices t. u, «', v, v', yx,..., y,_ x, y{,..., yj_ x,zx,...,zl^x,z[,...,z'l_x, where v is dif-
ferent from v' and t, u. u', v, v', are different from all the yk, y'k, zk and z'k. Trie edges of
H are as follows: t and u are connected to each yk, t and u' are connected to each y'k, u
and v are connected to each zk, and u' and v' are connected to each z'k. Moreover, all
theyk form an (I - \)-clique as do they'k, the zk and the z'k, respectively. Finally, v is
connected to v'.

Notice that any graph H as in Figure 2 has chromatic number / + 1. Also notice
that we allow the spindles to overlap, e.g., in the most extreme case z, = z- = yt = y[
for every i = 1_, / - 1 and v = u = u' = t. Hence Kl+, is one of these graphs.
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V_v1

ki i \^r• ̂ jj>  ^I'"v^ #,_,

Figure 2

We refer to these graphs as the l-Moser graphs. We should mention that the
2-Moser graphs include the odd cycles of length 3, 5, 7 and 9 and that the Moser
graph M itself is a special 3-Moser graph. (See Figure 3.)

Proof of Corollary 1.18. Let Q(t),Q(v) and Q(v') be Q-sets of t,v,v' resp.
and let R(t), R(v) and R(v') be the corresponding P-sets. From Lemma 1.17 it
follows that

i r./ \      „/  \ i     m       5l2m|s")nfi<")1>7-1^

and
i tw \      „/  /\ i     "7       5/2m\R(t) nR(v')\>-—-.

M: K~ ~A

Figure 3
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Hence

\R(v) n R(v')\ > \R(t) n R(v) n R(v') I > ^ - ^P- - m1/2,
'       log' 'q

which contradicts Lemma 1.14, for m sufficiently large.    □

Lemma 1.19. Let G be a graph defined on U satisfying the properties:
(Al) GisKl+x-free,
(A2) G contains a K,,
(A3) and (A4) as given in Lemma 1.15, Corollary 1.18 respectively.
Let xx,...,xj be vertices in G forming a K, and for each i, 1 < i < /, let

P(xj) = {w E\ G: w is connected to xt via a double spindle}.

Then G is l-colorable with parts P(xx),..., P(X/).

Proof of Lemma 1.19. From property (A3) it follows that (J'j=x P(x,) = U. Using
property (A4) twice it follows easily that each P(x() is an independent set and that
P(x,) n P(xA = 0 for every i * j.   U

Corollary 1.20. Let G be an EQR-graph. Then G is l-colorable and the size of
each color-class is at least m/l — m/log q, provided that m is sufficiently large.   □

Proof of Theorem 1. Let p(n) be an arbitrary polynomial with positive leading
coefficient. We want to show that for some C

S„<(l + C/p(n))Ln    for all n.

As indicated, we use induction on n.
Let n0 be large enough so that for m ^ n0 all the previous lemmas, corollaries,

statements and the inequalities given below hold. Then we assume that C > 1 is so
large that

S„ < (1 + C/p(n))Ln    forall/!</!„■
Now assume that the inequality is valid for some n > n0. We wish to show that

S„ + l < (1 + C/p(n + 1))L„ + 1,
where the graphs in Sfn + l  (recall that Sn +, = \£fn+ ,|) are assumed to be defined on a
set U, with \U\ = n + 1, e.g., U = {l,...,w + 1}.

By Corollary 1.20 we have that

l^+i l<  £k(^Ul°g(*2-*+2)(n)l)|*=i
1-2

+   £   |^(c/,/t,[log(*2-* + 2)(K)l)|
A=0

/

+ \V(U)\ + \9(U)\+  £ \Sk(V)\+Ln+X.
k-\

Thus it is sufficient to show that each of the 3/ - 1 terms on the right side of this
inequality different from Ln+X is at most (C/(3/ - \)p(n + 1))L„+1.
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These inequalities are verified below:
(A) Let k, 1 <fc</- 2, be fixed. Let x(k, n) = [log(*2-* + 2)(n)|.

\j*(U,k,x(k,n))\ = |j*(l/,fc,jc(fc,#i))| _ Sn + i-kMk.„) _ kx{^")    P„ + i_,
L«+l ^n+\-kx(k,n) ^n + 1 - kx(k,n) 1=1      ^n+l-(i-l)

We have upper bounds for the first factor by Lemma 1.3, for the second factor by
the inductive hypothesis and for the remaining product by Corollary 1.2. Hence we
get

\s/(U,k,x(k,n))\ < 2(/-i)*«x(A,n)//-flx(/t.»)/2/f1 +_£_\
Ln+1 " \       p(n + l-kx(k,n))j

.2-(l-l)(n+\-kx(k,n))kx(k,n)/l2(l+l)kx(k,n)\ogn

<  2~"Mk.n)/3ll-,   + _£_ j   <  _£_
\       p(n + 1 -kx(k,n)) J " (3/- l)p(n + 1) '

for n sufficiently large (independent of C).
(B) Let k, 0 < k < / - 2, be fixed. Then

|^(t/,/c,x(A:,«))|       l^(£/,fc,x(A:,«))|    ^      P„
7 ^ <? IT'

Here we have upper bounds from  Lemma 1.4,  the induction hypothesis and
Corollary 1.2.

Hence

\~e(U, k, x(k, n)) \ ^ y(i-\)n/t-n/ii[-^ +     ^    J2-</-iw/+(/+niogn

-' l1 + /J(«)j^(3/-l)77(« + l)'

for n sufficiently large (independent of C).

,r. mu)\   \nu)\ £   Ln
V~) T O / Jlb+1 °n ^n       ^n+1

Here we get upper bounds from Lemma 1.8, the induction hypothesis and Corollary
1.2.

l^(^) 1   ^  2</"1)"//""1/2/2| 1   _)_ _^1_ |2-('-l)n/'+('+Dlogn

< 2-"'/2/3('l +     C    ] <_-_
\       p(n)j^(3l-l)p(n + l)

for « sufficiently large (independent of C).

(D) Let x = \og(x(l - 1, «)) = flog":-3/+5)(n)|.

|3(t/)|   .   13(17)1   $,-(/-!)*    (/"^+1     L„ + 1_f
un + \ °n-(/-l)x *^h-(1-1)x i — l ^n + l-(i-l)
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Using Lemma 1.9, induction hypothesis and Corollary 1.2 we get

\®\U) 1   < 9((/-l)//)((/-l)A + l)«-x«/21og.v|l    ,   _£_ |
K+i    ^ \       p(n-(l-l)x)J

. 2-(C- !)//)(" + 1-(/-1)a--1)((/-1)a + 1) . 2<'+ D(C- l)x + l)log«

\       p(n-(l-l)x)f^(3l-l)p(n + l)'

for n sufficiently large (independent of C).
(E) Let k, 1 < k < /, be fixed.

\Sk(U)\ _ \gk{U)\ S„_k+1   k      L„+x_,
I <C 7 ^ 1   /%+l ^n-A+l     ^n-A + 1  i = l   ^n + l-O-l)

By Lemma 1.10 and again the induction hypothesis and Corollary 1.2 we have

\°k\U )\   <  2</-l)«*//-«/log<7|l   -|_^_ I  . 2-(/-1K"+1-*>*//2</+1'Alo8"
*•«+!     " \       p(« + l-A:)j

< 2-''/21ogJi   ,   _C_\      -C^-
i1     p(n + l-k))-(3l-l)p(n + l)'

for « sufficiently large (independent of C). This completes the proof of Theorem 1.
□

It is worthwhile to note that in fact the proof of Theorem 1 yields stronger results
than stated in the theorem.

Corollary 1.21. Almost every K/+x-free graph is an EQR-graph (in particular it
has the properties (A1)-(A4) (cf. Lemma 1.19).    □

Lemma 1.22. Every Kl+x-free graph (not necessary finite) which has properties
(A2), (A3) and (A4) is uniquely l-colorable.

Proof of Lemma 1.22. Let G = (U, E) be a AT/+1-free graph satisfying (A2), (A3)
and (A4). First notice that the same arguments as given in Lemma 1.19. yields that
G is /-colorable. Thus let any /-coloring A of G be given.

Let w, w' be vertices in the same color with respect to A. We claim, that there
exists x such that both w and w' are connected via a double spindle to x. From this
follows immediately that w and w' must be in the same colorclass with respect to
every /-coloring of G.

Let {xv...,x,} be an /-clique in G (guaranteed by property (A2)). By property
(A3) there exists x,, xJ such that w is connected via a double spindle to xk and w' is
connected via a double spindle to x,. Hence, w must have the same color as x( and
w' must have the same color as xr Therefore xt = x, = x, which completes the
proof of the lemma.   □

Combining Corollary 1.21 with Lemma 1.22 we get

Corollary 1.23. Almost every Kl+ x-free graph is uniquely l-colorable.   □
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2. A labeled 0-1 law for A^/+1-free graphs. A similarity type s is a finite sequence
s = (Rx,..., Pm) of relational symbols P,,..., Rm. It A is any structure of similar-
ity type s, then the first-order theory 7YA) of A is the set

P(A) = {</>: </> is a first-order sentence and A \= <f>}.

Let Jf be an infinite class of finite structures such that Jf" is closed under
isomorphisms and each structure in Jf is of similarity type 5 and has universe an
initial segment (1,2,..., n} of the natural numbers.

If <j> is a first-order sentence, then the labeled asymptoticprobabiliy ji(4>) of <p on Jf"
is given by the equation /x(<#>) = lim„^00 /!„(<?>) (provided this limit exists), where
u.,,(4>) is the fraction of members of Jf having cardinality n and satisfying <f>.

The first-order almost sure theory Yl(JT) of Jf is the set IT(Jf) = {<r>: 0 is a
first-order sentence and n(<p) = 1 on Jf}. Using the compactness theorem it is easy
to see that the almost sure theory II (Jf) is always consistent.

We say that the class Jf has a first-order labeled 0-1 law if ft(4>) exists and
ju(<>) = 0 or ju(</>) = 1 on Jf for every first-order sentence 4>.

Notice that a class Jf has a first-order labeled 0-1 law if and only if the almost
sure theory n( Jf) is complete. In this case for any model A of IT( Jf) we have that

A t= <f> if and only if ju.(<>) = 1 on Jf,

for every first-order sentence <J>.
The following straightforward and well-known proposition gives a sufficient

condition for a class Jf to have a first-order labeled 0-1 law.

Proposition 2.1. Let Jf be an infinite class of finite structures with universe initial
segments (1,2,..., n} of the natural numbers such that Jf is closed under isomor-
phisms. Assume that 2 is a set of first-order sentences with the following properties:

(i) fi(xp) = I on Jf for every sentence \p in 2.
(ii) 2 has a unique (up to isomorphism) countable model A (in this case we say that

2 is w-categorical).
Then Jf" has a first-order labeled 0-1 law and moreover the almost sure theory

Yl( Jf") of Jf coincides with the theory T(A) of A. If in addition 2 is a recursive set of
sentences, then H(Jt) is a decidable theory.   □

At this point we remind the reader of our blanket assumption that all graphs
considered here are undirected and without loops. More precisely, a graph is a
structure G = (V, E) such that E is a binary irreflexive and symmetric relation on
V.

Fagin [1976] proved that if ^ is the class of all finite graphs, then <& has a
first-order labeled 0-1 law. This is done by considering the set of first-order
sentences

2= {Tp}U{*4:*>l},

where t0 is the axiom

(Vx)(Vy)(xEy ^ yEx) a(Vjc)(-,jc3jc)
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(E is a symmetric, irreflexive relation) and ipk is the "extension axiom"
/

(vyx ■ • • v^)(vz, • • • vzk) A(U *yj) *(*,* *,)) a A0>, * Zj)
. i.j i.ji*j

\
- (3w)( A(w *y,) a A(w£z,) a AU^,))j  •

i i I

2 is shown to be an co-categorical theory using a back and forth argument. Finally
by estimating the number of graphs on which i//A fails, Fagin showed that jti(-i^t) =
0. It turns out that the unique countable model of 2 is Rado's graph (Rado [1964]).

Compton [1984] investigated asymptotic probabilities on classes of finite rela-
tional structures and showed that in many cases the existence of a first-order labeled
0-1 law for such a class # is closely related to the asymptotic behavior of the
exponential generating series a(x) of %', where

00    a

*(*)- E -fix;
n=\

and an is the number of labeled structures of cardinality n in <S.
Let tf be a class of finite structures closed under disjoint unions and connected

substructures and assume that a(x) has positive radius of convergence. One of
Compton's main results states that for any such class # a labeled first-order 0-1 law
holds for <€ if and only if the coefficients ajn\, n > 1, of a(x) satisfy a certain
growth condition. From this theorem Compton [1984] derives 0-1 laws for many
classes of finite structures which arise naturally in combinatorics, including the
collection of equivalence relations. Notice however that the class 'S of all finite
graphs is not covered by this result, since in this case a(x) converges only for x = 0.
For the same reason Compton's theorem has no implication for the class 6^(1) of
Kl+x-hce graphs, / > 2.

We prove next that for any / the class £f(l) of K/+x-hec graphs has a first-order
labeled 0-1 law. We introduce a set 2(/) of first-order axioms and we show that they
form an co-categorical theory and that each axiom has labeled asymptotic probability
equal to 1 on S?(l). The motivation for the axioms in 2(/) comes from the
structural information for almost all Kl+x-free graphs obtained in the first part of
this paper.

Let
2(0- {T0,T,,T2,T3,T4,}u{aA:*c>l}

be the set of the first-order sentences t, and ak (1 < / < 4, k ^ 1) over the similarity
type with only one binary relation symbol E, where these sentences are given as
follows:

t0 is the axiom (Vx)(\/y)(xEy -»yEx) A (Vjc)(-,(x£x)) and t,,t2,t3,t4 express
the properties (Al), (A2), (A3), (A4) respectively in Lemma 1.19. This means that if
G is a graph satisfying t,, t2, t3, t4, then

1. G is /ff/+1-free,
2. G contains a Kj as a subgraph,
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3. if the vertices xx,...,xt form a Kh then every vertex w is connected to one of
the x,'s via a double spindle, and

4. G does not contain any of the /-Moser graphs as a subgraph.
Lemma 1.19 implies that any such graph G is /-colorable and that any /-clique

xx.x, in G gives rise to the parts P(xx),..., P(x/) defined by the first-order
formula ip(Xj, w) which asserts that w is connected to xt via a double spindle.

The axioms ak are "extension principles for /-colorable graphs". For each k > 1
we let ok be the first-order sentence

(Vx, • • • Vx/XVyj • • • Vyk)(Vzx • • • Vzk){Vwx ■ ■ ■ Vwk)

A {x,EXj) A  A (U* y,) A U * Z;) A (w, * Wj))
'■j i.j

_\_i*j i*i

A A(y, * *j) A f\{^{xx,yi) A ^^(xr.z,.) A 4>(xi,w,))
i.j i
i*j

-> (3w)U(xx,w) A A((w # w,) A(wEyt) a(-,(wEz,)))  .

If a graph G satisfies t,, t2, t3, t4, and ak, then for any /-clique xx,..., x/; any two
sets {yu...,yk}, (z,,..., zk} disjoint from P(xx), and any subset {wx,...,wk} of
P(xx) there is a vertex w in P(x,) which is different from all the wf and such that it
connects to all the v, and to none of the z,.

First we prove that each axiom in 2(/) has labeled asymptotic probability equal
to 1 on the class £f(l) of A^/+1-free graphs.

It is obvious that ju(t0) = h(tx) = 1 on y(l). By Corollary 1.21 almost every
Kl+x-iree graph is an EQR-graph and ju(t2) = ju(t3) = ju.(t4) = 1 on Sf(l). We now
show

Lemma 2.2. Let I„(k) be the number of graphs in £f(l) with n vertices which do not
satisfy the axiom ak. Then

Urn   M^ = 0
«^oo    Sn(l)

and thus lim,,^^ ju„(-,aA) = 0 and ii(ok) = 1 on £f(l).

Proof. Let I',(k) be the number of graphs in Sf(l) with n vertices which are
EQR and satisfy ->ok, and let I,"(k) = I„(k) - I',(k). Corollary 1.21 implies
immediately that

n-»oo   Sn(l)
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We show that lim,,^^ Il',(k)/Sn(l) = 0 by finding an upper bound for I,',(k) and
using Theorem 1 together with the lower bound for Ln(l) from Lemma 1.1.

If G is any graph which satisfies rlt t2,t3,t4, and -,ak, then there are vertices
yx,...,yk,zx,...,zk,w1,...,wk,xx,...,xl in G such that the x,'s form a Kt
[yx,...,yk,zx,...,zk) is disjoint from P(xx), {w,,..., wk} is a subset of P(xx) and
for every w in P(xx) which is different from all the w,.'s either w does not connect to
one of y/s or it connects to one of the z,'s. Therefore we can construct every graph
G in Zf(l) with n vertices which is EQR and satisfies -,aA as follows:

First we choose vertices yx,...,yk,zx,...,zk (at most (nk)2 ways). Then we
impose a graph on these 2k elements (at most 2'"2' ways). Next we choose a graph
H on the remaining n - 2k elements with the property that yx,..., yk, zx,...,zk
can be connected to the vertices of 77 in such a way that the resulting graph
G is EQR, and thus, by Corollary 1.20, /-colorable with parts of size at least
(n - \)/l - (n - l)/log<7(rt - 1) for all sufficiently large n (there are at most
Ln_2k(l) ways to choose such a graph 77). Corollary 1.16 and Lemma 1.22 imply
that 77 must be uniquely /-colorable and therefore for every part P of 77 and all
sufficiently large n we must have

n — \ n — 1 „,      ,„,
/ log<7(H-l)

As a consequence

*        (/-!)« 1     2k(l-X)<-+      (/~1)"
]n< l + \ogq(n-l) + l      l+lk{l     1}< /     log^n-1)

for every part P of 77 and all sufficiently large n.
In order to connect 77 to {y1,...,yk,z1,...,zk} in such a way that the _y,'s and

the Zj's witness —tak in G we first choose a part P, (/-ways) and for each of the ^,'s
and each of the z,'s we choose a part different from P, (at most (/ - l)2* ways). We
choose next the remaining witnesses wx,..., wk of -,aA from the part P, (at most ("k)
ways). For each w in Px which is different from the wA.'s we have 22* — 1 ways to
connect it to the >>,'s and the z,'s (in order to avoid connecting w to all the yks and
to none of the z,'s). It follows that there are at most (22k - i)«/'+('-i)«/iog<2><?(«-i)
ways to connect P, - {wx,..., wk} to {yx,...,yk,zl,...,zk}. Also there are 22k
ways to connect {wx,..., wk} to {yx,...,yk,zx,...,zk}. It only remains to connect
the y,'s and the z,'s to vertices in the / - 1 parts of 77 which are disjoint from P,.
Each yk and each z, must connect to vertices in at most 1 — 2 parts because it must
avoid its own part. Therefore there are at most

22*(/-2)(n//+n(/-l)/logl2,<?(n-l))

ways to make these connections. Finally combining these estimates we obtain that
for all sufficiently large n

I'M) *s (;')22(2*,7.,,_2A(/)/(/- i)2'(;)(22^1)n//+</_1,"/,og<2,,?<""1)

.22A.-222A(/-2)(V/+n(/-l)/log<21</('i-l)>
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and hence
K(k) < Ln_2k(l)22k<l-2)"/'(22k - l)n/l ■ 2°(n\

By Lemma 1.1 we have that for all sufficiently large n

AA ^ 7 Ln_2k(l) ^2k(i-\)„/i/^2k-i\n/1     2°<">

MO "    MO '
2('2){n-2k)2/l2 + (n-2k)\ogl . 22k(1-2)"/1 (22k~ 1)"//l . 2°<">

<-"-
2(^)n2/'2 + (log/)n-/logn

< 2-('iri'kn/l1 + 2k(l-2)n/U2Lk-\\n/i . 2°(")

_ 2-2k"/'(22k — l)"/1 ■ 2o(n> = (l — \/2lkY'n • 20(M)

and hence lim,,^ I'n(k)/Ln(l) = 0. Since, by Theorem 1, \im„^xL„(l)/S„(l) = 1
we obtain immediately that lim,,^^ 7„'(/c )/£„(/) = 0 and consequently jti(-.aA) = 0
on y(l).

This completes the proof that the axioms in 2(/) have labeled asymptotic
probability equal to 1 on Sf(l). We can now use this fact to derive further structural
information about almost all 7^/+1-free graphs.

Corollary 2.3. (i) Let G be any finite l-colorable graph. Then almost all Kl+x-free
graphs contain G as an induced subgraph.

(ii) Almost all Kl+x-free graphs are uniquely l-colorable and have the property that
any two vertices in the same part are connected via a spindle.

Proof. Both (i) and (ii) are proved by iterated applications of appropriate
extension axioms ak.   O

Lemma 2.4. For each / > 2 the set of axioms

2(0 =  {T0>T1>T2'T3>T4} u W:  k > 1}
forms an w-categorical theory, that is to say it has a unique (up to isomorphism)
countable model D(/).

Proof. From Lemma 2.2 it follows that every finite subset of 2(/) has a model
(actually a finite model) and hence the compactness theorem guarantees the ex-
istence of a countable model of 2(/).

Assume now that G and G' are two countable models of 2(/). Since both G and
G' satisfy t0, tx, t2, t3, t4, we have, by Lemma 1.22, that they are uniquely /-colorable
graphs with parts Px,...,Pt and P[,..., P,' respectively. We claim that we can easily
construct an isomorphism /: G -* G' such that /(P,) = P[ for /' = 1,2,...,/. The
extension axioms ak, 1 < k < co, ensure that we can obtain this isomorphism using a
back and forth argument.   □

Combining Proposition 2.1 with Lemmas 2.2 and 2.4 we establish

Theorem 2. The class if (I) of Kl+x-free graphs has a first-order labeled 0-1 law.

Corollary 2.5 The class &(l) of l-colorable graphs has a first-order labeled 0-1
law.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



664 PH. G. KOLAITIS, H. J. PROMEL AND B L. ROTHSCHILD

The proof of Theorem 2 actually yields the following facts about the almost sure
theory U(y(l)):

Corollary 2.6. Let

n(«y(/)) = (<^: </> is a first-order sentence and u.(<t>) = 1 on Sr°(l)}

be the almost sure theory of Kl+x-free graphs. Then
(i) Yl(£f(l)) is an u-categorical, decidable theory

(ii) n(y(/)) has the finite substructure property, that is to say if \p is a first-order
sentence true in a model B of U(Sf(l)), then $ is true in a finite substructure of B.
As a consequence, 11(^(1)) is not a finitely axiomatitable theory.

(iii) The countable model D(l) of Yl(S(l)) is an l-colorable graph with uniquely
determined parts. Moreover, a finite graph H is a submodel of D(/) if and only if H is
l-colorable.

3. Labeled 0-1 laws and the amalgamation property. The classes & of all graphs and
y(l) of 7C/+1-free graphs, where / > 2, are both examples of families of finite graphs
which are closed under isomorphisms and substructures (induced subgraphs) and
have the amalgamation property given below.

A class Jf of relational structures has the amalgamation property if for any
structures A, B, C, in Jf and any embeddings /: C -» A and g: C -» B there is a
structure D in Jf and embeddings /': A -* D and g': B -> D such that f'°f =
g' ° g. (See Figure 4.)

We say that a relational structure A is homogeneous if any isomorphism between
two finite substructures of A can be extended to an automorphism of A. Homoge-
neous structures were first considered by Fraisse [1954]. The following result from
Woodrow [1976] relates classes having the amalgamation property to homogeneous
structures.

Lemma 3.1. (i) Let Jf be an infinite class of finite relational structures having the
amalgamation property and closed under isomorphisms and substructures. Then there is
a unique (up to isomorphism) countable homogeneous structure JF(Jf) such that the
class of finite substructures of Jr( Jf) coincides with Jf.

(ii) If A is a countable homogeneous relational structure, then the class Jf (A) of
finite relational structures which are embeddable in A has the amalgamation property
(and is obviously closed under isomorphisms and submodels).

D

/'/ \ *'

r\    A
c

Figure 4
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If Jf is a class as in (i), then we refer to J^( Jf) as the Fraisse structure of Jf.
Notice that if & is the class of finite linear orderings, then ^(0) is isomorphic to

the ordering of the rational, that is to say the countable dense linear ordering
without endpoints. Also if ^S is the class of all finite graphs, then it is easy to see that
^CS) is Rado's graph.

We say that a graph 77 is an equivalence graph if it is the disjoint union of
complete graphs. Notice that if S is the family of all finite equivalence graphs, then
^F(io) is the countable equivalence graph which has as components infinitely many
infinite complete graphs.

Let D(/) = (V, E) be the (unique) countable model of the almost sure theory of
the Kl+ ,-free and the /-colorable graphs, where / > 2. From Corollary 2.6 we have
that D(/) is an /-colorable graph with uniquely determined parts PX,...,P,. It is
quite clear that D(/) is not a homogeneous structure and, as a result, the class
J?(1) = Jf(D(/)) of all finite /-colorable graphs does not have the amalgamation
property. In contrast to this, it can be easily verified that the expanded structure
D*(/) = (V, E, Pv..., Pi) is homogeneous. As a matter of fact D*(/) is the Fraisse
structure of the class T*(l) of all finite l-colored graphs, that is to say relational
structures of the form (V',E',P[,..., P/>, where (V, E') is a graph and all the P{
are independent subsets of V which partition V.

Lachlan and Woodrow [1980] have given a complete classification of all infinite
families Jf of finite graphs having the amalgamation property and closed under
isomorphisms and substructures. By Lemma 3.1 this yields a classification of all
countable homogeneous graphs.

If G = (V, E) is a graph, then the complementary graph G is defined as G =
(V, E), where E = {(x, y): x ¥= y and (jc, y) £ E}.

If Jf is a class of graphs, then the complementary class Jf consists of all graphs G
such that G is in Jf. Lemma 3.1 implies that Jr( Jf) = J7r( Jf) for any infinite class
Jf of finite graphs having the amalgamation property and closed under isomor-
phisms and substructures.

Let T = ({x, y, z}, {(x, y),(y, z)}) be the graph whose diagram is
V

A
X z

and let T be the complementary graph of T. The diagram of T is

V   X z

Notice that for each / > 1 the complementary graph K, of the /-clique K: is an
independent set of size /:

With these preliminaries at hand, we state now the main theorem of Lachlan and
Woodrow [1980].

Theorem 3.2. Let Jf, and Jt2 be two infinite classes of finite graphs having the
amalgamation property and closed under isomorphisms and induced subgraphs. Then

tfx = Jf,     if and only if   Jf, n 38 = Jf, n 38,
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where

2 = {T,T}u{Km:m>l)u{Km:m>l}.
This theorem implies that there are only countably many infinite classes Jf of

finite graphs having the amalgamation property and closed under induced subgraphs
and isomorphisms. The assumption that the graphs under consideration are undi-
rected is essential, since Henson [1972] has proved that there exist 2N° nonisomor-
phic countable homogeneous directed graphs.

We investigate next first-order labeled 0-1 laws on each class X of finite graphs
which arises from Theorem 3.2. We distinguish the following cases for Jf and the
corresponding Fraisse structure &■( Jf).

Casel. {T,f} CJTD38.
Case la. Jf n 38= 38.
Here we have that Jf = <§, the class of all finite graphs, and the Fraisse structure

&(<&) is Rado's graph. As mentioned before, J5'(^) is the unique countable model
of 2 = (t0) U {\pk: k > 1}, where ipk, k > 1, are the extension axioms for graphs.

Case lb. There is an / ^ 2 such that

Jtr\38={T,f}\j{Kx,...,K,}u{Km:m>\}.

Here we have that Jf=5"(/), the class of all Kl+1-hee graphs. The Fraisse
structure ^((£^(1)) has been studied by Henson [1971]. It is shown there that
^(6^(1)) is the unique countable model of a set of axioms which assert that the
graph is 7C/+1-free and satisfies certain extension principles for 7C/+1-free graphs.
These principles state that any finite subgraph can be extended by one vertex in any
way provided the extension does not contain a Kl+X.

Case lc. There is an / ^ 2 such that

Jfn 38= [T,f}yj{Km: m^l}Vj{Kx,...,Kl}.
Here we have that Jf= 5^(1), the class of all graphs in which the largest

independent set has at most / vertices. For the Fraisse structure of S"(l) we have
that Sr(S?(l)) - J^(y(/))J_

Case 2.T£ Jfn 38 and T e Jfn 38.
Case 2a. Jfn 38 = {T} U [Km: m > 1} U {Km: m > 1}.
Here we have that Jt= S, the class of all finite equivalence graphs, and &($) is

the countable equivalence graph with infinitely many infinite complete graphs as
components.

Case 2b. There is an / #= 2 such that

Xc\38= {f } U{Klf...,K,} U{Km: m>l).
Here we have that Jf = $'(l), the class of all finite equivalence graphs with each

component a complete graph of size at most /. The Fraisse structure &(£'(l)) is the
countable equivalence graph consisting of infinitely many components each of which
is the complete graph Kt of size exactly /.

Case 2c. There is an / > 2 such that

Jfn <#= {f} u{Km: m>\)\j{Kx,...,K,}.
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Here we have that Jf = £"(l), the class of all finite equivalence graphs with at
most / components. The Fraisse structure 3F(£"(I)) is the countable equivalence
graph consisting of exactly / components each of which is the infinite complete
graph.

Case 3. T <= Jfn 38 and T £ Jfn 38.
In this case we get the complementary classes to those in Case 2.
Case 3a. Jfn 38 = {T} U [Km: m > 1} U [Km: m > 1}.
Here Jf = £, the class of finite complete partite graphs and &(£) is the complete

co-partite graph with parts of size co.
Case 3b. There is an / > 2 such that

Jfn 38 = [T] u{Kx,...,K,} VJ{Km: m > 1).
Here Jf = £'(l). the class of all finite complete partite graphs with parts of size at

most /. The Fraisse structure &(£'(l)) is the complete co-partite graph with parts of
size exactly /.

Case 3c. There is an / > 2 such that

Jfn 38= {T}v{Km: m > l} U {K1,...,K,}.
Here Jf = £ "(I), the class of all finite complete m-partite graphs for some m < /.

The Fraisse structure J5" (<f "(/)), is the complete /-partite graph with parts of size co.
Case 4.T,T <£ Jfn 38.
Case 4a. Jfn 38 = {Km: m > 1}.
Here Jf= [Km: m > 1} = £"(1) and the Fraisse structure is the countable

complete graph.
Case 4b. Jfn 38 = {Km: m > 1).
Here X~= {Km: m > 1} = £"(\) and the Fraisse structure is the countable

graph with no edges.
These cases exhaust all classes given by the Lachlan-Woodrow Theorem 2.8,

because in Cases 1, 2 and 3 Ramsey's Theorem guarantees that {Km: m ^ 1} C Jf
or {Km '■  m ^ 1} — ̂ ■> while in Case 4 the amalgamation property rules out the
possibility that {K2, K2} c Jf.

We verify now that in each of the above cases a first-order labeled 0-1 law holds
for the corresponding class Jf. To facilitate this we use the following

Lemma 3.3.   Let Jf be a class of finite graphs with universes initial segments
{1,2,..., n} of the natural numbers and such that Jf is closed under isomorphisms.
Then Jf has a first-order labeled 0-1 law if and only if the complementary class Jf
does. Moreover if A is a model of the almost sure theory H( Jf) of Jf, the A is a
model of 11(3?).

Proof. For any formula 4>(xx,...,xm) over the similarity type with only one
binary symbol E, we define the complementary formula 4>(xx,...,xn) by induction
on the construction of tf> as follows:

(1) if cf> is XjEXj, then cf> is -i(x,Ex?);
(2) if <j> is one of the three formulas x(Fjc;, x, = x-, xj = x(, then 4> is <j>',
(3) if t> is »//, A i//2, then cj> is \px A \p2;
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(4) if </> is -,f then c/> is ̂ ;
(5) if <f> is HXjXJ/, then <j> is 3jc,t//.
A straightforward induction shows that for any graph G, any sequence ax,...,am

of vertices in G and any first-order formula (j>(xx,..., xm) we have that

G,ax_,am\=<j>    if and only if    G,ax,... ,am\= 4>.
As a result, if 4> is any first-order sentence, then the labeled asymptotic probability
of <j> on Jf is equal to the labeled asymptotic probability of <j> on Jf. The
conclusion of the lemma follows immediately.   □

In Case la, as we have already mentioned, the class 'S of all finite graphs has a
first-order labeled 0-1 law (Fagin [1976]). The almost sure theory Il(^) is co-cate-
gorical and coincides with the theory T(/FCS)) of the Fraisse structure of 'S which
in this case is Rado's graph.

In Case lb the first-order labeled 0-1 law for the class if (I) of 7C/+1-free graphs
(/ ^ 2) was obtained in Theorem 2. The almost sure theory U(6f(l)) is co-categori-
cal and coincides with the theory P(D(/)) of the unique countable model D(/) of the
axioms 2(/). Notice that the graph D(/) is not isomorphic to the Fraisse structure
!F(if(l)), because !F(if(l)) contains all 7C/+1-free graphs as induced subgraphs and
in particular it is not /-colorable. As a consequence we have that n («$"(/)) ¥=
T(&(if(l)). _

By Lemma 3.3 the first-order labeled 0-1 law for if (I) in Case lc follows from
Case lb. In particular,

n(5oo) = t(dIo) * T(F{y(ij)).
In Case 2a the first-order labeled 0-1 law for the class £ of all finite equivalence

graphs is an easy consequence of the results of Compton [1984]. The argument is
identical to that for the finite equivalence relations in Compton [1984], since £ and
the class of finite equivalence relations have the same exponential generating series.
Moreover, H(£) coincides with the theory of the countable equivalence graph £
which has as components infinitely many complete graphs of each finite cardinality.
As a result, Yl(£) is not co-categorical and Yl(£) * T(&(£)).

In Case 2b the first-order labeled 0-1 law for the class £'(l) of equivalence graphs
with components of size at most / (/ > 2) follows again from Compton [1984]. The
almost sure theory Yl(£'(l)) is the theory of the countable equivalence graph E(/)
which has as components infinitely many complete graphs of every cardinality less
than or equal to /. In particular, H(£'(l)) is co-categorical, but Tl(£'(l))=t
T(&(£'(1)).

In Case 2c, let £"(l) be the class of equivalence graphs with at most / compo-
nents (/ > 2). We claim that a first-order labeled 0-1 law holds for £"(l) and that
U(£"(l)) = T(3F(£"(l))).

Notice that, since ^(£"(1)) is the countable equivalence graph consisting of
exactly / infinite components, the theory T(^(£"(l))) is axiomatizable by the set of
first-order axioms {<f>x,<i>2,<f>J} U [xm- tm. 5? 1}, where

(1) cj>[ asserts that E is an irreflexive, symmetric relation such that if xEy, yEz
and x # z, then xEz;

(2) cj>2 asserts that there is no independent set of size / + 1;
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(3) <i>3 asserts that there is an independent set of size /;
(4) For each m > 1, \m asserts that for every vertex there are at least m different

vertices connected to it.
To prove the claim it is enough to show that

H(4,x) = u.(4>2) = /i(4»3) = M(x J = 1    for all m ^ 1 on £"(l).

It is obvious that fi(<j>x) = ju,(<f>2) = 1 on £"(l). The number of equivalence graphs
on n vertices with exactly k components is the Stirling number s(n, k) of the second
kind. It is well known (Jordan [1939]) that lim„_00(5(«, k)/(k"/k\)) = 1. This
asymptotic result implies immediately that on £"(l)

i        \        ,. r   s(n,k) \M(-fc)-   l«n      E   4—7f    =0
»-oo \k = 0 s(n,l) J

and so ju(tf>3) = 1. The number of equivalence graphs on £ "(I) with n vertices
which satisfy —,%„, is at most m("m)(s(n, I — 1) + • • • +s(n, 1)) and thus ju(-iXm) =
Oon £"(l).

Since the classes in Case 3 are complementary to those in Case 2, it follows from
Lemma 3.3 that first-order labeled 0-1 laws holds for these classes. Moreover, in
each case we have conclusions about the relation between the almost sure theory and
the theory of the corresponding Fraisse graph similar to those in Case 2.

Finally, it is obvious that in both Case 4a and Case 4b a first-order labeled 0-1 law
holds and that the Fraisse structure is the unique countable model of the almost sure
theory.

We have thus established the following

Theorem 3. Let Jf be an infinite class of finite graphs with universes initial
segments {1,...,«} of the natural numbers such that Jf has the amalgamation
property and is closed under isomorphisms and induced subgraphs. Then the labeled
asymptotic probability ii(4>) on K of any sentence <J> of first-order logic is either Oorl.

From the proof of this theorem we can obtain additional information about the
almost sure theory II (Jf) of each such class Jf. In particular, we have

Corollary 3.4. Let Jf be an infinite class of finite graphs satisfying the hypotheses
of Theorem 3. Let

n(jf) = {<f>: </> is a first-order sentence and il(§) = Ion Jf}

be the almost sure theory of K. Then
(i) n( Jf) is a decidable theory,

(ii) n( Jf) has the finite substructure property and thus it is not finitely axiomatiz-
able.

Proof. For each such class Jf we have that II(Jf) is decidable, because it is
complete (by Theorem 3) and has a recursive set of axioms which is given for each
case in the proof of Theorem 3. The finite substructure property follows from the
fact that if <J> is true in some model B of II(Jf), then ju(cj>) = 1 on Jf and thus <}>
must be true in some member of Jf which is a finite substructure of B.
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Class JT Countable model of U(JT)       Is n<Jf) w-categorical?   Is II(Jf) = 7"(JMJT))?

'S = all graphs Rado's graph Yes Yes
,y(/) = Jf;, ,-free graphs       D(/), the universal graph Yes No
(/ Ss 2) for /-colorable graphs

& = equivalence graphs equivalence graph which is No No
the disjoint union of infinitely
many complete graphs
of each finite cardinality

<?'(/) = equivalence graphs    equivalence graph which is Yes No
with components of size        the disjoint union of finitely
at most / (/ > 2) many complete graphs of

each cardinality  § /

<f"(/) = equivalence equivalence graph which is Yes Yes
graphs with at most the disjoint union of exactly
/ components (/^ 1) / infinite complete graphs

Table 1

We have also found the classes Jf for which Yl(Jf) is co-categorical and have
determined when the almost sure theory Il( Jf) coincides with the theory T(&( Jf))
of the Fraisse structure 3>( Jf). We summarize this information in Table 1, in which
only one of the classes Jf and Jf appears.

We conclude by pointing out that if Jf is an infinite class of finite relational
structures having the amalgamation property and closed under isomorphisms and
substructures, then Jf does not necessarily have a first-order labeled 0-1 law. For
this consider the countable partial ordering A = (A, < ) which has infinitely many
components each isomorphic to the ordering of the rationals. It is clear that A is a
homogeneous structure and therefore the class Jf (A) of the finite substructures of A
has the amalgamation property. However, Jf (A) is the class of finite linear forests
and Compton [1984] has proved that the first-order labeled 0-1 law does not hold for
this class.
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