
BULL. AUSTRAL. MATH. SOC. 94B25, 05C69, 68R15 , 11AO7

VOL. 66 (2002) [369-384]

1-PERFECT CODES IN SIERPINSKI GRAPHS

SANDI KLAVZAR, UROS MILUTINOVIC AND CIRIL P E T R

Sierpinski graphs S(n, k) generalise the Tower of Hanoi graphs—the graph S(n, 3) is
isomorphic to the graph Hn of the Tower of Hanoi with n disks. A 1-perfect code (or
an efficient dominating set) in a graph G is a vertex subset of G with the property
that the closed neighbourhoods of its elements form a partition of V(G). It is proved
that the graphs 5(n, k) possess unique 1-perfect codes, thus extending a previously
known result for Hn. An efficient decoding algorithm is also presented. The present
approach, in particular the proposed (de)coding, is intrinsically different from the
approach to Hn.

1. INTRODUCTION

The study of perfect codes in graphs was initiated by Biggs [4] in 1973. At first,
perfect codes were studied mostly in distance regular graphs and related classes of graphs,
see, for instance, [3, 8, 24]. In the late 1980s Kratochvil and his co-workers followed
with a series of papers studying perfect codes in general graphs, (see [13, 14, 16, 18]).
Most of the results up to 1991 are collected in the monograph [15].

From the algorithmic point of view, several NP-complete results were obtained by
Kratochvil and Kfivanek [17, 15, 16]. In particular, for any fixed t it is NP-complete to
decide whether a graph has a t-perfect code ([15, Theorem 7.0.1]). The special case of
1-perfect codes was independently proved to be NP-complete by Bange, Barkauskas, and
Slater [1] and by Fellows and Hoover [7]. Recently, yet another proof for 1-perfect codes
appeared in [5, 6]. The 1-perfect code problem remains NP-complete on /c-regular graphs
(for any fixed k ^ 3) ([15, Theorem 7.2.2]), planar 3-regular graphs ([15, Theorem 7.2.4])
and planar graphs of maximum degree three ([7]), as well as on bipartite and chordal
graphs ([23]). For additional information on complexity results we refer to [10, 15].

On a positive side, Fellows and Hoover [7] showed that the problem of existence of
a 1-perfect code in a tree can be solved in linear time, while Kratochvil, Manuel and
Miller [19] proved that it is polynomial on interval graphs. Recently, Klostermeyer and
Eschen [12] obtained efficient algorithms for finding 1-perfect codes in interval graphs
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and circular-arc graphs. Bange, Barkauskas, and Slater [1] gave a constructive charac-
terisation of trees that contain 1-perfect codes, see also [2].

Recently, Cull, Li, and Nelson [5, 6, 20] considered perfect codes in the Tower of
Hanoi graphs Hn. In [5] it is shown that the graphs Hn contain (essentially) unique
1-perfect codes. In addition, code vertices are described in a simple way that allows an
easy decoding algorithm. These results are more or less repeated in [6]. Finally, in [20]
it is proved that besides the 1-perfect codes and the trivial ^-perfect codes (with either
one code vertex or three code vertices) there are no other i-perfect codes in Hn.

A two parametric generalisation S(n, k) (n, k ^ 1) of the Tower of Hanoi graphs was
proposed in [11]. It was in particular shown that for any n > 1, the graph S(n, 3) is
isomorphic to the graph of the Tower of Hanoi with n disks. We call the graphs S(n, k)

Sierpiriski graphs since their introduction was motivated by topological studies [21, 22] of
Lipscomb's space, where it was shown that this space is a generalisation of the Sierpiriski
triangular curve (Sierpiriski gasket).

In the next section we recall the concepts of the Sierpiriski graphs and perfect codes in
graphs, and give some basic facts about them. Then, in Section 3, we prove that any graph
S(n, k) contains (essentially) unique 1-perfect code, thus extending the corresponding
result for S(n, 3) from [5]. The proofs enable us to develop an efficient decoding algorithm
that is presented in the last section.

2. PRELIMINARIES

For a graph G — (V(G),E(G)), the distance dG(u,v), or briefly d(u,v), between
vertices u and v, is defined as the number of edges on a shortest u, u-path. A set C C V(G)
is a t-code in G if d(u, v) ^ 2t + 1 for any two distinct vertices u,v € C; i-codes are also
known as 2t-packings. In addition, C is called a t-perfect code if for any u 6 V(G)
there is exactly one v € C such that d(u, v) < t; 1-perfect codes are also called efficient
dominating sets. Note that C is a 1-perfect code if and only if the closed neighbourhoods
of its elements form a partition of V{G).

A set D of vertices of a graph G is called dominating if every vertex w € V{G) - D
is adjacent to some vertex v G D. The domination number of a graph G, y(G), is the
order of a smallest dominating set of G. The following result is well-known and has been
independently established several times, see [9, Theorem 4.2].

PROPOSITION 2 . 1 . Let C be a 1-perfect code in a graph G. Then \C\ = j(G).

The above proposition implies that all 1-perfect codes in G have the same cardinality,
a result that extends to all ^-perfect codes, (see [15, Corollary 4.6]).

The graph S(n,k) (n,k ^ 1) is defined on the vertex set { 0 , 1 , . . . , k — 1}", two
different vertices u = {i\, i2, •.., in) and v = (ji,J2, • • • ,jn) being adjacent if and only if
u ~ v. The relation ~ is defined as follows: u ~ v if there exists an h € {1 ,2 , . . . ,n}
such that
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(i) \/t,t<h=>it=jt,

(ii) ih^jh,
(iii) Vt, t > h => it = jh & jt = ih .

In the rest of the paper we shall shortly write i\i2. •. in for (ii,i2,---,in)- The graph

5(2,4) is shown in Figure 1, while the relation ~ is schematically explained in Figure 2.

01

10

Figure 1: Sierpinski graph 5(2 ,4)

Figure 2: Visualisation of relation ~

Clearly, |S(ra,A:)| = kn. Let i € { 0 , 1 , . . .A; - 1}, then the vertex ii...i of S(n, k) is

called an extreme vertex. Clearly, S(n, k) contains k extreme vertices, and they are of

degree k - 1, while all the other ^(A;""1 — 1) vertices are of degree k.

Let r 6 { 1 , 2 , . . . , n } and let iu i2,. • •, ir G { 0 , 1 , . . . A; - 1}. Then the subgraph of

S(n, k), induced by the vertices whose first r coordinates are iti2 •.. ir, will be denoted

Note tha t S(n,k;ii,i2,.-.,ir) is isomorphic to S(n — r,k). In particular, the subgraph

S(n, k\ i\, i2, • • •, in-i) is isomorphic to 5 ( 1 , A;) which is in turn isomorphic to the complete

graph K)., and S(n, k;i\,i2,..., in) is the one vertex graph. Observe also tha t the vertices

of S(n, k) can be covered with the vertices of kr disjoint subgraphs S(n, k; i\,i2,--,ir),

obtained via all possible selections of i\, i2,..., iT . We shall use the natural convention

that the generic symbol S(n,k;i\,i2,...,iT) for r = 0 means the graph S(n,k) itself.

https://doi.org/10.1017/S0004972700040235 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040235


372 S. Klavzar, U. Milutinovic and C. Petr [4]

A subgraph S(n,k;i) contains one extreme vertex of S(n,k), namely ii...i, and
k — 1 vertices of the form ijj ...j, j ^ i, that are, respectively, adjacent to vertices
jii... z of the subgraphs S(n, k; j). Hence, in S(n, k) there is exactly one edge between
each pair of the k subgraphs S(n, k\ i), i = 0 , 1 , . . . , k - 1.

For any subgraph S(n,k;ii,i2,.. .,ir) of S(n, k), r — 1 , . . . ,n — 1, a vertex v of
the form Zii2 • • -Ujj • • -3> where j is taken n — r times, will be called an extreme ver-

tex of S(n,k;ii,i2,- • • ,iT), as it is mapped to an extreme vertex of S(n — r,k) by any
isomorphism of S(n, k; i\, 12, • • . , ir) onto S(n — r, k).

Let us introduce a useful shorthand notation that will simplify both formulation
and visualisation of the coming statements. The full meaning and importance of it will
become clear in Theorem 3.3, where we shall prove that the four cases described here are
in fact the only possibilities.

Let C be a given 1-perfect code in S(n, k) and (ii,...,iT) € {0 , . . . , k — l } r . Then

S(n,k;ii,i2,.. .,ir), means:

"For 0 ^ £ ̂  k — 1 all extreme vertices i\i2 ... ir£... £ of S(n, k; ii, 12, • • •, iT)
belong to C". In Theorem 3.3 we shall prove that this is possible only for
even m = n — r.

S(n,k;ii,i2,. • .,iry means:

"iii2 ...irj...j is adjacent to a code vertex outside S(n, k;ii,i2,..., iT),

and all other extreme vertices ii%2.. .ir£...£, 0 < £ ^ k — 1, £ ^ j , are

adjacent to code vertices inside S(n,k;ii,i2,.. .,ir)"- In Theorem 3.3 we

shall prove tha t this is also possible only for even m = n - r.

S(n,k;ii,i2, • • • ,ir)* means:

"For 0 ^ £ ̂  k — 1 all extreme vertices i i i 2 . . .ir£.. .£of S(n,k\ii,i2,... ,zr)
are adjacent to code vertices outside S(n, k; i\, i2,..., iT)"• In Theorem 3.3
we shall prove that this is possible only for odd m = n — r.

S{n,k;iui2,...,ir)j means:
"iii2 • • .irj ...j belongs to C, and in S(n, fc; ix, i2,..., ir) all other extreme
vertices iii2 • • • ir£ • • • £, 0 ^ £ < k — 1, £ ̂  j , are adjacent to code vertices
inside S{n, k; ir, i2, •. •, ir)"• In Theorem 3.3 we shall prove that this is also
possible only for odd m — n — r.

In Figure 3 the above four cases are schematically presented, while in Figure 4 several
examples are depicted.

The usage of subscripts and superscripts was selected in such a way that subscripts
are used in cases when S(n,k;ii,i2,... ,iT) is "self-sufficient", that is, when any vertex
of S(n,k]ii,i2,...,iT) is either an element of C, or is adjacent to an element of C inside

S(n, k; ii, i2, • • •, ir)- A superscript is used when this is not the case.
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Figure 3: Possible relation of S(n,k;ii,i2,...,ir) to a given C

3. MAIN RESULTS

In this section we prove that for any n ^ 1 and k ~£ 1 the graph S(n, k) contains
a unique 1-perfect code. More precisely, every 1-perfect code C contains at least one
extreme vertex and, assuming that the extreme vertex 00 . . . 0 belongs to C, we prove
that C is unique. As S(n, 1) = K\ for any n, there is nothing to be proved in this case.
S(n, 2) is isomorphic to the path on 2n vertices and a simple argument gives the claim
also in this case. As we already mentioned, the result for k = 3 was established in [5].

For a fixed 1-perfect code C in S(n, k), k ^ 2, and for any extreme vertex of
S(n,k;ii,i2,-.-,ir), there are exactly three possibilities:

1. v is adjacent to a code vertex inside S(n, k; i\,

2. v is adjacent to a code vertex outside S(n, k; ij

3. v is a code vertex.

Denote the number of extreme vertices of S(n, k;ii,i2,..

a, b, and c, respectively. Note that a = k — b — c. In order to simplify the notation set
m — n - r; note that 1 ^ m ^ n. Recall that S(n, k; i\, i2,..., ir) for r = 0 means the
graph 5(n, k) itself.

Lemma 3.1 and Proposition 3.2 demonstrate how simple number-theoretic techniques
can give us a lot of information about 1-perfect codes in S(n, k).

LEMMA 3 . 1 . Let C be a fixed 1-perfect code in S(n, k), k ^ 2. Let iii2... ir

be any element of { 0 , 1 , . . . , k — l } r , where r € { 0 , 1 , . . . , n — 1}. Ifb, c, and m have the
same meaning as above, then

(k + 1) | (km -ck-b).

PROOF: Denote H = S(n,k\i\,i2,...,iT) and note first that H has km vertices. An
extreme vertex of H has k - 1 neighbours in H. Hence in the closed neighbourhoods in

,...,ir);

2,..., ir);

, ir) of type 1, 2, and 3 by

https://doi.org/10.1017/S0004972700040235 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040235


374 S. Klavzar, U. Milutinovic and C. Petr [6]

H of extreme vertices of type 3 there are ck vertices of H. If an extreme vertex u of H
is adjacent to a code vertex v of C, v £ H, then u is clearly adjacent to no code vertex
of H. The remaining km — ck — b vertices of H are of degree k and hence they must
be covered by closed neighbourhoods of size k + 1. It follows that km - ck - b must be
divisible by k + 1. D

PROPOSITION 3 . 2 . Under the assumptions of Lemma 3.1, ifm is even, then

either c = k and b — 0, or b = c + 1, and ifm is odd, then either c = 0 and b = k, or

c = b+l.

P R O O F : Since - 1 = k (mod (fe + 1)), it follows ( - l ) m = km (mod (A; + l)) ,

and then ( - l ) m - ck - b = km — ck — b (mod (k + l)). Using Lemma 3.1 we infer

( - l ) m - d b - 6 = 0(mod (k + l)), thus (-l)m + c-b = c(k + 1) (mod (k + l)). We

conclude that ( - l ) m + c - b = 0 (mod (k + 1)).

C A S E 1. TO is even. Since 1 + c — b = 0 (mod (fc + 1)), there is an integer E, such that

b - c = 1 + (k + l)t

From 0 ^ 6 + c O i t follows 0 ^ 2c + 1 + (k + 1)£ ^ k.

In case I ^ 1 we get a contradiction from the right hand side inequality: 2c + 1
^ k{\ —£)—£< 0. In case £ ^ - 2 , the left hand side inequality gives a contradiction:
2c + I ^ (k + 1)£ ^ 2(2k + 1), hence Ok. Therefore, there are only two possibilities:
£ = 0, or £= - 1 .

£ = 0 gives 6 = c + 1, and £ = - 1 gives 6 = c + L Since 6 ^ A; and c ^ 0, the second
case is possible only when c = 0 and 6 = k.

C A S E 2. TO is odd. In this case we get -1 + c - b = 0 (mod (k + 1)), and therefore
there is an integer £, such that

c - b = 1 + (k + 1)£.

We now proceed as in the even case, except that we interchange b and c. Q

In fact, a stronger result than the one given in Proposition 3.2 can be proved:

THEOREM 3 . 3 . Under the assumptions of Lemma 3.1, ifm is even, then either
c = k and b = 0, or c = 0 and b — 1, and ifm is odd, then either c — 0 and b = k, or
c = 1 and 6 = 0.

P R O O F : We are going to prove, by induction on m = n - r e { l , . . . , n } , that for
any subgraph S(n, k; i\, i2,.. •, iT) of S(n, k) exactly one of the following holds true (the
reader is advised to use Figure 4 to visualise these cases in the proof):

1. TO = n — r is even, c = k, b = 0, that is, 5(n, k; i\, i2,. •., ir)» ;

2. TO = 7i — r is even, c = 0, b = 1, that is, S(n, k; i\, i 2 , . . . , ir)
j ;
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S(4,3;0)

S(4,3;2,0)2

1111 1112 1121 1122 1211 1212

S(4,3;l,2,2), S(4,3;2,2)

Figure 4: Examples of subgraphs in 5(4,3)

3. m = n — r is odd, c = 0, b = k, that is, S(n, k; i\, i2,..., ir)* ;

4. m = n — r is odd, c = 1, b — 0, that is, S(n, k; iit i2,..., ir)j .

For m — 1, since S(n,k;ii,i2,. •.,in-i) is isomorphic to the complete graph Kk,

there are only two possibilities: the subgraph S(n, k;ii,i2,. • • ,in-\) contains no code
vertex, or it contains exactly one code vertex. In the first case all vertices are adjacent to
code vertices outside the subgraph, hence S(n, k; i\,i2,. • •,in-i)*- In the second case let
i\i-i- • • in-ij € C. Since all other vertices of the subgraph are adjacent to i\i2 • • • in-ij,

the subgraph is of type S(n, k;ii,i2,..., in-i)j •

In the rest of the proof we shall use the following abbreviations. Let H
= S(n,k\ix,i2,...,ir) a n d H{£) = S{n,fc;iui2,...,ir,£)•

Let m be an even number, and suppose the claim holds for m — 1. Consider the
subgraph H with n — r = m. For each of its subgraphs H(£), 0 ̂  I ^ k - 1, either H(£)*

or H(l)j holds by the inductive assumption.

Suppose first that for any I we have H(£)j (for each £ for some j). Then all k code
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vertices that are the extreme vertices of H(£), 0 ^ £ §J k — 1, must be the extreme vertices
of H. Indeed, otherwise there would be an extreme vertex of some H(£) adjacent to a
code vertex outside H(£), and such does not exist. Thus in this case we have //» . That
also means that for each £ the corresponding j equals £, that is, when / / , then H(j)j,
O^j^k-l.

Suppose next that H(i)* holds for at least one subgraph H(i) of//. Any two different
subgraphs H(i') and H(i") are joined by an edge. Hence they cannot simultaneously
satisfy H(i')* and H(i")*, for otherwise one of them would contain an extreme vertex
belonging to C. Thus in this case there is a unique H(i) with H(i)* and H(£)j for
0 ^ £ ^ k — 1, £ ^ i (for each £ for some j). Then the extreme vertices i\i2 . . . iT£ii... i of
H(£) are code vertices adjacent to the extreme vertices of H{i). Indeed, otherwise there
would be an extreme vertex of H(i) adjacent to a non-code vertex that is an extreme
vertex of one of the H(£), 0^£^k — I, £^i, contrary to the requirement that it must
be adjacent to a code vertex outside H(i) (note that it cannot be adjacent to more than
one vertex outside H(i)). Thus in this case we have Hl, since the remaining extreme
vertex of H(i) must be adjacent to a code vertex outside H. Hence it is an extreme
vertex of H, and the extreme vertex of H belonging to H{i) is i\ii . . . iTii... i. By this
we have also proved that H1 implies H(i)* and H(j)i, j ^ i, since the extreme vertex
ix%2 • • • irij • • • j of H{i) is adjacent to the code vertex i ^ . . . iTji • • • i, which is an extreme
vertex of H(j).

Let now m > 1 be an odd number, and suppose the claim holds for m — 1. Consider
the subgraph H with n — r = m. Each of its subgraphs H(£), 0 ^ £ ^ k — 1, satisfies by
the inductive assumption either / /(£), or H(ty.

Assume first that for any £ we have H(£y (for each £ for some j). Then all k extreme
vertices of H{£), 0 ^ £ ^ k - 1, which are adjacent to code vertices outside H{£) (one
for each £), must be in fact adjacent to code vertices outside H, since inside H they are
adjacent only to other extreme vertices of subgraphs H(£), and none of them is a code
vertex. Therefore, these k vertices must be extreme vertices of H, since only they may
be adjacent to vertices outside H. That means that we have H*. From the argument we
also infer that H* implies H(i)1, 0 ^ i ^ k — 1.

Suppose next that H(i), holds for at least one subgraph H(i) of H. Then such
a subgraph is clearly unique, for otherwise C is not a 1-perfect code. Hence let H{i)
satisfies H(i)t and let H{£), for 0 < £ < k - 1, t^ i, satisfy H(£)> (for each £ for some j).
Then k — 1 extreme vertices of H(i) must be adjacent precisely to those extreme vertices
of subgraphs H(£), for 0 ^ £ ^ k — 1, £ ^ i, which are adjacent to code vertices outside
H(£). Indeed, other extreme vertices of H{£), 0 ^ £ ^ k - 1, £ ^ i, are adjacent to code
vertices inside corresponding H{£). That means that in this case we have Hi . Since any
extreme vertex iii2... iTij ... j of H(i), j ^ i, is adjacent to iii2 ... irji • •. i, which is an
extreme vertex of H(j), we have also proved that Ht implies H(i), and H{j)1, j ^ i.
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This completes the inductive proof. D

Note tha t the above proof demonstrates that , with respect to C, the structure of the

subgraphs S(n, k; ii,i2, • • •,ir) is strictly determined by the structure of the subgraphs

S(n, k\ii,i2,...,ir,£),0^£^ k — 1. Figures 5 and 6 show schematically how the graphs

S ( n , k ; i i , i 2 , • • • > v ) a r e b u i l t f r o m t h e s u b g r a p h s S ( n , k \ i i , i 2 , . . . , i r , £ ) , 0 ^ £ ̂  k - l , m

all possible cases.

In Figure 5 the bottom row shows the only two possibilities when m — n - r

is even. The left hand side of the figure shows that when S(n,k;ii,i2, • •. ,ir)*, then
S(n,k;i\,i2,...,ir,i)i, 0 ^ i ^ k - 1, and the right hand side shows that when
S(n, k;iui2,...,iTy, t h e n S(n,k;iu...,ir,i)* a n d S(n,k;ii,...,iT,j)i, for all j ^i.

/ V \
fe o,

P
96

Figure 5: The structure of S(n,k;ii,i2,...,iT) when m = n — r is even

In Figure 6 the bot tom row shows the only two possibilities when m = n— r is odd.

The left hand side of the figure shows that if S(n, k; i i t . . . , iT)i, then S(n, k;ii,...,ir, i)«

and S(n, k;ii,..., iT,j)*, for all j ^ i, while the right hand side shows tha t S(n, k;ii,..., iT)*

implies S(n,k\i\,...,ir,i)
1, 0 ^ i ^ k — 1.

In the following theorem we include what we have just illustrated and proved while
proving Theorem 3.3:

THEOREM 3 . 4 . Let C be a fixed 1-perfect code in S(n,k), k ^ 2 and let

r£ {0 , l , . . . , n - l} . Then:

https://doi.org/10.1017/S0004972700040235 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040235


378 S. Klavzar, U. Milutinovic and C. Petr [10]

* / \

•X^% * « * <$*%?
dfeM.36 <^-w-^>

Figure 6: The structure of 5(n, fc;zi,i2,... , i r) when m = n — r is odd

1. S(n,k;ii,.. . , i T ) . implies S{n,k;ii, ...,ir,j)j, 0 ^ j ^ k - 1;

2. 5 ( n , A ; ; i 1 , . . . , i r ) ' i m p l i e s S { n , k ; i u .. . , i r , i ) ' and S { n , k \ i u . . . , i r , j ) t for

3 . 5(n, fc; i i , . . . , i r )* implies S{n,k;ii,.. .,ir,i)', 0 ^ i < k - 1;

4. 5 ( n ) A : ; i i , . . . ) i r ) i i m p l i e s S ( n , k ; i u . . . , i r , i ) , and S { n , k ; i u . . . , i r , j Y for

0 < j < A - 1, i # t.

Cases 1 and 2 are possible when m — n — ris even, and cases 3 and 4 are possible when
m is odd.

Understanding the structure of the subgraphs S(n,k;ii,...,iT) with respect to a
given 1-perfect code will enable us to prove our main result on the existence and unique-
ness of 1-perfect codes in graphs S(n, k), as well as to describe a decoding algorithm and
prove its correctness. Before that, we state a simple consequence of Theorem 3.3.

COROLLARY 3 . 5 . Let C be a fixed 1-perfect code in S(n, k), k ^ 2. Ifn is odd,
C contains exactly one extreme vertex jj ... j , and ifn is even, C contains all extreme
vertices of S(n,k).

PROOF: Clearly, for the whole graph S(n,k) we have 6 = 0. Hence Theorem 3.3
implies c = k if m is even, and c = 1 if m is odd. D
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THEOREM 3 . 6 . For any n ^ 1 and any k ^ 1 the graph S(n, k) has a unique

l-perfect code, ifn is even, and there are exactly k l-perfect codes, if n is odd. More

precisely, let n be odd and let jj ... j be the extreme vertex of S(n,k) belonging to a
l-perfect code C. Then C is unique.

PROOF: We first show the uniqueness claims by repeated applications of Theorem
3.4.

Let n be even and let C be a l-perfect code in S(n, k). By Corollary 3.5 all extreme
vertices of S(n, k) belong to C, therefore S(n, k), holds. Recall that S(n, k) is induced by
the (disjoint) subgraphs S(n, k; i). Case 1 of Theorem 3.4 implies that S(n, k\ i)i holds for
all i. S(n, k) is also induced by the subgraphs S(n, k; i, j), so using Case 4 of the same the-
orem we get S(n, k; i, i), and S(n, k; i,j)*, for j ^ i. Moreover, for each of the subgraphs
it is uniquely determined which property it satisfies. Applying Cases 1 and 2 and consid-
ering S(n, k) as the graph induced by the subgraphs S(n, k\ i,j, £), we find that for each
of them it is uniquely determined whether it satisfies S(n, k; i, j , £)p or S(n, k; i, j , (.)*. Al-
ternating applications of Cases 3 and 4, and Cases 1 and 2 and considering S(n, k) as the
graph induced by the subgraphs S(n, k\ i\... in-\), we conclude that for each of them it is
uniquely determined whether it satisfies S(n,fc;ii,i2,... , i n - i )* or S{n, k\ii,i2,... ,in-i)q

(for each choice of indices ii,22,• • - ,in-i the property holding true is also uniquely de-
termined, as well as the index q in the second case). If 5(n, k;ii,i2,...,in-i)*, then
S(n, k; ii, i2, •. •, in-i) contains no code vertex, and iii2... in-i<7 is the only code vertex
o(S(n,k;ii,i2,... ,in-i) iiS(n,k;ii,i2,.. . , i n _ i ) , (recall that these graphs areisomorphic
to the complete graphs). Hence, vertices belonging to C are uniquely determined.

Proof for the odd case is analogous, except that we start from S(n, k)j and apply
Case 4 Theorem 3.4 in the first step.

We next show that the only possible candidates for l-perfect codes described above
indeed exist. We proceed by induction on n. Simultaneously we prove by the same
induction that for any even n, there is a subset Dn C V(S(n, k)), such that any vertex
v ^ 00 . . . 0 of S(n, k) either belongs to Dn or is adjacent to exactly one vertex from Dn,
and that 00 . . . 0 is neither in Dn nor adjacent to any vertex of £>„. Also, by the same
induction we prove that for any odd n, there is a subset Dn C V(S(n, k)), such that any
vertex v ^ ii... i, 0 ^ i ^ k — 1, either belongs to Dn or is adjacent to exactly one vertex
from Dn, and that any vertex ii... i, 0 ^ i ^ k — 1, is neither in Dn nor adjacent to any
vertex of Dn.

Obviously any one-element subset of V(S(l, k)) is a l-perfect code in 5(1, k). It is
also clear that the set of all extreme vertices in 1^(5(2, A;)) is a l-perfect code in 5(2, A:),
see Figure 1. Also, Dx = 0 and D2 = {10,20,... (k - 1)0} satisfy all the requirements of
the additional claims for 5(1, A:) and 5(2, A;), respectively.

Let n > 2 be an even number. Then n - 1 > 1 is an odd number, and by inductive
assumption there is exactly one l-perfect code C C V(S(n— l,k)) containing 00. . .0 .
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For each i, 0 ^ i ^ k - 1, let /< : ViS(n - 1,/c)) —> ViS{n,k)) be an isomorphism
from Sin - 1, k) onto the subgraph S(n, k; i) of S(ra, A;) such that fr (00. . . 0) = ii...i.
Then /0(C) U ••• U /*_i(C) is a 1-perfect code in S(n, A:). Namely, any vertex from
Sin, k; i) either belongs to fiiC), or is adjacent to exactly one vertex from /i(C), and is
not adjacent to any of the vertices from fjiC) for j ^ i. This follows from the observation
that the only edge connecting the subgraph /i(C) with the subgraph / ,(C) is the edge
between ijj ... j and jii... i, and that an extreme vertex of 5(n — l,k), different from
0 0 . . . 0, is mapped by / , to jii... i, and it does not belong to C.

Let Ai_i C V(5(n — 1, k)) be a set such that any vertex of Sin — 1, k) but ii...i,

0 ^ i ^ k — 1, either belongs to A>-i, or is adjacent to exactly one vertex from £>n_i. For
1 = 0 , . . . , k— 1 let & : V(S(n— 1, A;)) —> ViSin, k)) be an isomorphism from 5(n— 1, A;)
onto the subgraph Sin, k; i) of S{n, k) such that #i(00... 0) = iO.. . 0. Then any vertex
of Sin, k) but 0 0 . . . 0 either belongs to goiDn-i) U <?i(C) U • • • U gk-\iC), or is adjacent
to exactly one of its vertices. This follows by isomorphism properties for all but extreme
vertices of 5(n, k; 0). The claim for any vertex of the form 0i...i, l ^ i ^ k - l follows
from the fact that Oi.. . i is adjacent to iO... 0, and iO.. . 0 e ft(C). Since 00 . . . 0 is not
adjacent to any vertex not in <7o(A>-i)> it also satisfies the required properties.

Let n > 2 be an odd number. Then n — 1 > 1 is an even number, and by inductive
assumption there is exactly one 1-perfect code C C ViS{n — l,k)). Also, there is a
subset Dn-i C ViSin - 1, k)), such that any vertex of 5(n - 1, k) but 00 . . . 0 either
belongs to Dn_i, or is adjacent to exactly one vertex from £>n_i. For i — 0 , . . . , k - 1
let g{ : ViSin - l,k)) —> V(5(n, A;)) be defined as above. Then any vertex of S(n,ifc)
either belongs to ffo(C) ^->9iiDn-i) U- • •U5*_i(Dn_i), or is adjacent to exactly one of its
vertices. This again follows from the fact that Oi... i is adjacent to iO.. . 0.

Finally, for i = 1 , . . . , k - 1 let f{ : ViSin - 1, k)) —> ViSin, k)) be denned as
above. Then /o(.Dn-i) U • • • U / j t- i(Ai-i) satisfies the requirement, that each vertex of
S(n, A;), except the extreme vertices, either belongs to this set, or is adjacent to exactly
one vertex from it. This follows from the isomorphism embedding properties, and from
the observation that no extreme vertex belongs to A,_i, which is easily proved by the
same induction, if this claim is added to the list of claims proved by the induction. D

The obtained results allow us to calculate 7(S(n, A;)) as follows. Let r = 0 , 1 , . . . ,
n — 1, m = n — r. If m is odd, let

cim) = Cn V(5(n,k\i\,

6(m) = C n

If m is even, let

cim) = Cn

6(m) = C n V(5(n, A;; iui2,. • •,ir

if S{n,k;ii,i2, •. • ,iT)j, and

if S(n,k;ii,i2,---;iry-

if S(n , A;;ii,i2,.. •, i r)», a n d

if i?(n, A;; i i , 1 2 , . . . , i r ) J .
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Introduction of this notation simplifies the formulation of the following corollary, and is

in the same time justified by it, since the inductive proof of the corollary shows that the

cardinalities of the above intersections do not depend on the choice of 11,12, • • •, V, and

3-

C O R O L L A R Y 3 . 7 . F o r any £^1,

1.2*-1 , 1 1.21-2 _ 1

*(«i)*nm-.
fc2' - 1

PROOF: Obviously c(l) = 1, 6(1) = 0. From Theorem 3.4 we obtain the recursive
formulas

b{2e) = b(2£ - 1) + (jfc - l)c(2£ - 1),

1) = kb{2£),

for t ^ 1. From these we obtain the following inductive proof:

1.2/1-1 , 1

1-2 --[

U21-1

= c(2i) + (k ^

+ D
Applying Proposition 2.1 and Corollary 3.7 we get:

THEOREM 3 . 8 . For any n ^ 1 and any k~£l,

, ; n even,

4. T H E DECODING ALGORITHM

Let C be a given 1-perfect code in S(n, k) and let t; = viv2 • • • vn be a given vertex
of 5(n, &). The algorithm presented below decides whether v is a code vertex, and if it is
not, computes the adjacent code vertex v'. The algorithm is presented in a pseudo code
to make it as clear as possible.
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1. subrout ine S(n, k;vi, v2, •. •, vT)j begin
2. if(r = n - l )
3. then if (vn - j)

4. then v G C
5. else v' = (vuv2,...,vn-i,j)

6. e l se if (vr+i = j)
7. then ca l l S(n,k;v1,v2,...,vr+l),
8. e l s e c a l l S(n,k; Vi,v2, • • •,*V+i)J

9. end
10. subroutine S(n,k;vi,v2,... ,vr)* begin
11. if(r = n - l )
12. then v = vx... vsij ... j , j ^ i, v' = vx... vaji... i

13. e l s e c a l l S(n, k;vi,v2, • • •, vr+i)Vr+1

14. end
15. subrout ine S(n,k;vi,v2, • •. ,vT)m begin
16. c a l l S(n,k;vuv2, •. • ,vr+i)Vr+1

17. end
18. subroutine S(ra,k;vi,v2, • • • ,vT)i begin

19. if(ur+i=j)

20. then call S(n, k\ vx, v2,..., vr+i)*

21. else call S(n, k;vi, v2,... ,tv+i)j

22. end

23. main_program begin

24. if(n odd)

25. then call S(n,k)j

26. else call S(n,k)t
27. end

The algorithm first decides whether n is odd or even. In the first case we must know
which extreme vertex jj... j belongs to C and at line 25 the algorithm calls the sub-
routine S(n, k;Vi,V2,..., vr)j with r — 0. If n is even, the algorithm calls the subroutine
S(n, k; Vi,v2,... ,vT)t with r = 0 at line 26. The flow of the algorithm is graphically
presented in Figure 7.

The algorithm ends when r = n — 1. This happens either in the subroutine
S(n,k;vi,v2,... ,vr)j or in S(n, k\V\, v2,... ,vr)*. In the first case, if vn — j , vertex
v is determined to be a code vertex (at line 4), else its neighbour W1V2 . . . t>n_ij is a code
vertex (at line 5). In the second case v is not a code vertex, neither is a code vertex
any of its neighbours in the complete graph S(n,k;vi,v2,---,vn-i). Since we ended in
the subroutine S(n,k;vi,v2,... ,wn_i)*, vertex v is adjacent to a unique code vertex v'
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END

START

Figure 7: State transition diagram

outside of the complete graph (at line 12). The vertex v' is determined in the following
way. If v = Vi... vsij .. .j, j ^ i, then v' = V\... vsji... i. To compute the value of s,

we have two possibilities. Either we keep track of the last index r for which two consec-
utive components wr_i and vT differed during the flow of the algorithm, or we separately
compute such value at the very end of the algorithm, namely at line 12.

This completes our description of the algorithm. The fact that it works as claimed
follows immediately from (the proofs of) Theorems 3.6 and 3.4.

We conclude the paper by noting that the decoding algorithm is optimal, that is, it
is linear in the length n of an input word.
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