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ABSTRACT: This paper shows that both scalar implicatures and exhaustification of
answers can be understood as the outcome of a pragmatic reasoning based on Gricean
maxims. I offer a formalization of the Gricean reasoning that solves the problems (cf.
Chierchia 2001) faced by standard neo-Gricean accounts. I further show that positive
and non-positive answers pattern very differently, in a way that can be predicted by
stating carefully, for a given question-answer pair, what counts as an "alternative
answer" - this notion plays the same role as that of “scalar alternative” in previous
approaches.

1. Imperfections of Standard Neo-Gricean Accounts
According to neo-Gricean accounts, scalar implicatures are computed as follows:

given a sentence S containing a scalar term t, S is to be compared to all sentences
which can be obtained from S by replacing t with a term belonging to t’s scale. For
any such scalar alternative S’ such that S’ asymmetrically entails S, the hearer infers
that S’ is not part of the speaker’s beliefs. (hereafter, rule R1; this derives the so-
called clausal1 or primary2 implicatures). The underlying principle motivating this
inference is Grice’s first maxim of Quantity. Assuming further that the speaker is
maximally informed, the hearer infers that S’ is in fact false according to the speaker
(hereafter, rule R2).

(1) A or B               (2) A and B

Suppose the speaker utters a sentence of the form of (1). Its unique scalar
alternative is (2). Since (2) is logically stronger than (1), (2) is not part of the
speaker’s belief. Moreover, if the speaker is maximally informed, (2) is false, so that
or in (1) is interpreted as exclusive, even though its literal linguistic meaning is that of
inclusive disjunction.

Whatever the merits of this approach (in particular, the fact that it predicts that the
exclusive reading of or should disappear in monotone decreasing contexts, due to the
reversal of entailment patterns), it has been shown to be inaccurate in many cases,
especially when a scalar term is interpreted under the scope of some operators. For
instance, Chierchia (2001) points out that the neo-Gricean procedure yields too weak
results for a sentence like (3):

(3) Each of the students read Othello or King Lear
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(3) (sometimes) implicates (4)3:

(4) Each of the students read Othello or King Lear and not both.

The neo-Gricean account predicts a much weaker implicature, namely (5):

(5) It is not the case that each of the students read Othello and King Lear.

Another problem is that the neo-Gricean account can also lead to too strong
predictions. Take a sentence of the following form:

 (6)        (A or B) or C

Scalar alternatives of (6):
a. (A and B) or C       b. (A or B) and C    c. (A and B) and C

All these alternatives are stronger than (6), so that (6) should implicate that they
are all false (by rule R2). In particular, a. should be false, in which case C is. But (6)
certainly does not implicate that C is false4. Let me call this problem, which is
actually very general, that of unwanted negations. If, on the other hand, we find a way
of blocking this inference, we remain unable to predict that (6) normally implicates
that only one of the three disjuncts is true. 

1. 1 Chierchia’s localist solution

Chierchia (2002) presents a solution based on a recursive interpretation function
which computes “strengthened meanings” in tandem with the interpretation function
that computes “literal meanings”. For him, scalar implicatures are simply an
additional dimension of meaning, and the link between scalar implicatures and
general principles of conversational rationality becomes less clear, even though some
basic aspects of the neo-Gricean approaches are retained.

Hereafter, I will defend a “globalist” approach to scalar implicatures, in the sense
that it relies on the natural hypothesis that pragmatic processes operate at least at the
sentential level.

1. 2. Sauerland (2004)

Sauerland (2004)5 proposes a globalist approach to the puzzle of multiple
disjunctions which relies on two modifications of the standard neo-Gricean account.
First, he expands the set of alternatives for a given sentence, and second, he motivates
a modification of the inference rules. A sentence S of the form  ‘(A or B) or C’ will
have the following alternatives:

{A, B, C, (A or B), (A or C), (B or C), (A and B), (A and C), (B and C), (A and B)
or C, (A or B) and C, (A and B) and C, (A or B) or C}

The first inference rule is meant to capture what Sauerland calls primary
implicatures, i.e. inferences of the form ‘The speaker does not hold the belief that….’.
For any alternative S’ that asymmetrically entails S, it follows from the maxim of
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quantity that the speaker does not believe that S’ is true. In this particular case, all the
alternatives (as defined above) entails S. So we derive, among other things, the fact
that the speaker does not believe A to be true, nor B nor C, and also that he does not
believe (A or B) to be true. Sauerland uses the following notation, borrowed from
epistemic logic :

¬KA, ¬KB, ¬KC, ¬K (A or B), etc.

Next, all the logical consequences of these statements are computed.  For instance,
since the speaker does not know ‘(A or B)’ to be true, and since, on the other hand, he
believes ‘(A or B) or C’ to be true (maxim of quality), it follows that he cannot know
C to be false. Indeed, if he both believed C to be false and ‘(A or B) or C’ to be true,
then he would believe ‘(A or B)’ to be true, which contradicts ‘¬K(A or B)’.
Therefore ¬K¬C can be added to the set of primary implicatures. More generally, it
follows that the speaker must be uncertain about the truth of each of the disjuncts.
After all the logical consequences of primary implicatures are derived, and added to
the set of primary implicatures, so-called secondary implicatures are computed as
follows:

If ¬Kf is a primary implicature and ¬K¬f has not be derived as a primary
implicature or a logical consequence of primary implicatures, then infer the following
: K¬f.

In the case of multiple disjunctions, you get the intended reading by deriving first
¬K(A and B), ¬K(A and C), ¬K(B and C) and then, by using the second inference
rule : K¬(A and B), K¬(A and C), K¬(B and C).

A few comments on Sauerland’s procedure, which is I believe basically on the
right track: One question is how exactly the alternatives are defined. Sauerland needs
to say that for any sentence of the form (A or B), the set of its alternatives is {A, B,
(A or B), (A and B)}. But because he wants the relation “being an alternative of” to be
an equivalence relation (as in the standard view), he runs into the following problem:
any two sentences X and Y are alternatives of each other; indeed, since (X or Y) is an
alternative of X and of Y, X and Y are alternatives of each other (by symmetry and
transitivity of the relation “being an alternative of”). But if this were true, then no
scalar implicature would ever be derived.6 Sauerland solves this problem by an
entirely ad hoc move: he introduces two binary connectors cL and cR such that ‘A cL

B’ ‘is equivalent to A, and ‘A cR B’ is equivalent to B, and then stipulates the
following scale : <or, and, cL, cR>. Then the alternatives of (A or B) are the following
: {A cL B,  A cR B, A or B, A and B}. This set is semantically equivalent to the
previous one, but it is not the case anymore than any two sentences X and Y are
alternatives of each other, even though ‘X cLY’ and ‘X cR Y’, which are equivalent to
‘X’ and ‘Y’, are, for any X and Y. As the author notes, these two connectors are
actually never used –and this is accounted for by the maxim of manner, which says
that one is supposed to be brief. Not only is this an ad hoc move; it is also not in
accordance with the Gricean intuition that sentences are to be compared to other
sentences that could have been uttered instead. Instead of resorting to this move, one
could have simply given up the constraint that alternative sets be equivalence classes.
After all, it would seem quite natural to say that ‘A’ is an alternative of ‘A or B’, but
not the other way around, based on the plausible view that a given sentence should be
compared only to sentences that are not more complex (one could interpret Grice’s
maxim of manner in this way). But this is not the solution I will advocate. Rather, I
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will nearly claim that any two sentences X and Y are alternatives of each other. More
precisely, what I will claim is that any two elementary answers to a given question
under discussion are alternatives of each other. Consider the following dialogue:

(7) Who came ?
      Peter came.

I define the set of elementary answers to the question in (7) as the set of all
propositions of the form ‘x came’, where x ranges over the contextually given domain
of quantification.  The proposition that, say, ‘John came’, is therefore an alternative to
‘Peter came’. Using Sauerland’s scale, it is also the case that ‘John came and Peter
came’ is among the alternatives. This alternative asymmetrically entails the
proposition expressed by the answer actually uttered. From which the hearer derives
(in two steps) that the speaker believes that ‘John came and Peter came’ is false,
which, together which the fact that he believes ‘Peter came’ to be true, entails that he
believes ‘John came’ to be false. More generally, for any individual C distinct from
Peter in the quantificational domain, it follows that the speaker believes that C didn’t
come. What I have informally derived is the so-called exhaustive interpretation of
answers. My main claim in this paper is that exhaustivity can be derived from Gricean
assumptions.

1. 3. Is exhaustification the solution ?

Van Rooy (2002), on the other hand, uses exhausitivity as his starting point, and
claims that scalar implicatures are just a sub-case of it. He proposes to derive scalar
implicatures from the fact that, if a certain question Q is under discussion and a
certain sentence S is given as an answer to Q, S is generally interpreted as
"exhaustive".

The exhaustivity operator (Groenendijk & Stokhof 1984) operates on answers of
the form 'GQ P', where GQ stands for a generalized quantifier and P for a predicate.
The question under discussion is understood as "for which objects is P true of these
objects ?".

The exhaustivity (exh) operator works as follows7:
[[exh (GQ P)]]  = 1 iff  [[P]] ∈  (Min [[GQ]] ), where (Min [[GQ]] ) is the set that

includes only the minimal members of [[GQ]] , i.e:
Min [[GQ]] =  {x  x ∈ [[GQ]]  and there is no x' in [[GQ]]  such that x' ⊂ x}
(⊂ = “is a proper subset of”)

Example:
 (7) a. Among John, Mary and Peter, who came?
       b. John or Mary came
[[John or Mary]] = {{J, M, P}, {J, M}, {J, P}, {J}, {M, P}, {M}}
(Min [[John or Mary]] ) = {{J}, {M}}
[[exh (John or Mary came)]]  = 1 iff [[came]]  ∈ {{J}, {M}} i.e. iff only John came or

only Mary came.

Van Rooy shows that when exhaustification is applied to monotone increasing
contexts, it can solve some of Chierchia's puzzles.
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1. 4. When exactly do we exhaustify answers ?

However, if exhaustification is applied to a sentence 'GQ P' where GQ is
decreasing, exhaustification as defined above leads to unrealistic implicatures: "less
than two chemists came" should implicate that nobody came! So Van Rooy uses a
second exhaustivity operator (exh’) in these cases, following Stechow &
Zimmermann (1984):

[[exh' (GQ P)]]  = 1 iff  [[P]] ∈ (Max [[GQ]] ), where (Max [[GQ]] ) is the set that
includes only the maximal members of [[GQ]]

There are several problems with this account. First, the second rule of
exhaustification makes wrong predictions:

(8) a. Among the chemists and the philosophers, who came?
     b. Less than two of the chemists

Exhaustification leads to b':
b' . Exactly one chemist and all the philosophers came.

But b. does not seem to implicate b'; b. actually does indeed suggest that some
chemist came, but does not implicate anything regarding non-chemists. It rather
suggests that the speaker does not know much about them.

Second, these two rules are unable to account for cases where the speaker
combines increasing and decreasing quantifiers, thus creating a non-monotone GQ, as
in (9)b:

(9)  a. Among the chemists, the philosophers and the linguists, who came?
      b. Less than two chemists but one philosopher came

If we apply the first exhaustivity operator, what we get is that b. implicates that no
chemist and no linguist came, while exactly one philosopher came. If we apply the
second exhaustivity operator, what we get is that exactly one chemist, all the
philosophers and all the linguists came. None of these predictions is in fact borne out.
Rather, it seems that (9) implicates that at least one chemist came, exactly one
philosopher came, and that the speaker does not know much about linguists.

1. 5. Goal of this paper: deriving exhaustivity

In the next sections, I show that both scalar implicatures and exhaustification of
answers can be understood as the outcome of a pragmatic reasoning that is based on
the Gricean maxims. I will first offer a precise formalization of the Gricean reasoning,
meant to replace the two rules R1 and R2. I will then show that it is possible to predict
the facts reviewed above by defining carefully what counts as an "alternative answer"
for a given answer to a certain question under discussion8.

2. Formalizing the Gricean reasoning
I now assume that a certain sentence A is uttered as an answer to a (maybe

implicit) question Q, and I adopt a partition semantics for questions
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(Groenendijk & Stockhof 1984): Q induces an equivalence relation RQ, over the set of
worlds.

Notation:
- w RQ w’                          w and w’ belongs to the same « cell»
- RQ (v) = {w  w RQ v}         (= the set of worlds equivalent to v, or v’s cell)
- α (w)                               _ is true in w (alternatively: w ∈ _)
- α ⊆ β         _ is a subset of _; _ entails _
- α ⊂ β        _ is a proper subset of _; _ asymmetrically entails _

The proposition α expressed by A is supposed to meet the condition of strong
relevance:

Def 1 (strong relevance): A proposition α (= set of worlds) is strongly relevant
with respect to a question Q if

a) ∃ w, (RQ(w) ∩ α) = Ø (i.e.: α excludes at least one cell)
and
b) ∀w, (α  (w) ↔  (RQ(w) ⊆ α)) (α  does not distinguish between two

worlds that belong to the same cell, i.e. provides no irrelevant information)

The speaker’s information state is modeled as a set of worlds, i.e. a proposition. As
an agent believes a lot of things that are irrelevant in the context of a given question, it
is useful to define what counts as the relevant information contained in a certain
information state:

Def 2 (relevant information): Let i be an information state and Q a question. Then
we define i relativized to Q, written as i/Q, as follows:

 i/Q = {w ∃ w', (w' RQ w and w'∈ i)}   ( = ∪w∈ i RQ(w)).

The Gricean reasoning is based on the idea that α (the proposition given as an
answer) must be compared to a certain set of alternative propositions9 which the
speaker could have chosen instead of α. This alternative set, call it S, must contain α
itself, and be such that all its members are relevant10. The hearer's task when
interpreting the speaker's utterance is to address the following question: given that the
speaker has preferred α to all the other members of S, what does this entail regarding
his information state i0? First, the speaker must believe α to be true (Grice’s maxim
of quality), i.e. i0 must entail α. Second, α must be optimal in the sense that there
must be no more informative proposition in S entailed by the speaker’s beliefs
(Grice’s maxim of quantity), i.e. there must be no proposition α’ such that i0 entails
α’ and α’ asymmetrically entails α. Put differently, i0 must belong to the following set
I(S, α, Q):

Def 3: I(S,α, Q) = {i i/Q ⊆ α and ∀ α' (α' ∈ S and i/Q ⊆ α’) → ¬ (α' ⊂  α)}

So if a certain proposition β is entailed by no member of I(S,α,Q), the hearer can
conclude that β is not part of the speaker’s belief. This reasoning plays the role of rule
R1. It is immediately predicted that if the speaker utters a sentence P of the form “A
or B” and if the propositions expressed by A and by B belong to the alternative set S,
as I will assume (so does (2002)), then the speaker cannot know A to be either true or
false: if A were true, then A would have been a better answer than P; if A were false,
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B would be true (since P is), and B would have been a better answer than P11. Now,
let the hearer assume that the speaker is as informed as possible given the answer he
made. This means that his information state i0 is maximal in I(S,α,Q) in the following
sense: there is no i’ in I(S,α,Q) such that i’ (relativized to Q) asymmetrically entails i0

(relativized to Q). In other words, i0 belongs to Max(S,α,Q), defined as follows:

Def 4: Max(S,α,Q)={ii ∈ I(S,α,Q) and∀i' (i'∈I(S,α,Q))→ ¬ (i'/Q⊂ i/Q )}

From this the hearer can conclude that if a proposition β is entailed by all the
members of Max(S,α,Q), then β is believed by the speaker. This reasoning plays the
role of R2, but is not equivalent to it: there is no way of deriving an “unwanted
negation”. In the case of a disjunctive statement in which the disjuncts are logically
independent, the disjuncts and their negations are entailed by no member of I(S,α,Q),
as shown above, so that they cannot be entailed by any member of Max(S,α,Q) either,
since Max(S,α,Q) is included in I(S,α,Q).

From now on, whenever it clear what the question under discussion is, and
considering that the content of an alternative set only depends on the question under
discussion and the sentence uttered, I will simply write I(α) and Max(α) instead of
I(S,α,Q) and Max(S,α,Q). S(α) will denote the alternative set of α.

3.  Alternative sets and Exhaustification
3. 1. An example

Let P be of the form ‘(A or B) or C’, where A, B and C are logically independent.
Assume that (1) is uttered in a context in which A, B and C’s truth-values are what is
relevant i.e. as an answer to a question Q amounting to “Which sentence(s) are true
among A, B, and C?”

For any information state i, the relevant part of i in this context (i.e i/Q) belongs to
the boolean closure of {A,B,C}. So we will loose nothing if we view information
states as sets of valuations of {A, B, C}, i.e. as propositions of the propositional
language based on {A,B,C}, where any such proposition actually stands for a class of
propositions that are all equivalent when relativized to Q. Let S(P) (the alternative set
of P) be the closure under union and intersection of {A,B,C}12. Intuitively, S(P) is the
s e t  o f  p o s i t i v e  a n s w e r s  t o  Q :
S(P)={A,B,C,A∨B,A∧B,A∨C,A∧C,B∨C,B∧C,(A∨B)∨C,(A∧B)∨C,A∨(B∧C)...}Assu
me i0 = ((A∨B)∨C))∧(¬(A∧B) ∧ (¬(A∧C)∧¬(B∧C))). Then i0 ∈  I(P), since P is the
only – and therefore best - proposition in S(P) entailed by i0

13; i0 can also be described
as the set of the three following valuations:

A B C

W1 T F F
W2 F T F
W3 F F T
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I now show that Max (P) = {i0}, e.g. that i0 entails all the members of I(P).
Suppose i1 is an information state that is not entailed by i0 and that belongs to I(P).
There is then an element of i0 that does not belong to i1. Suppose W1 does not belong
to i1. Then i1 entails P’: P’ = ¬(A∧(¬B∧¬C)) = ¬A∨(B∨C)

But i1 belongs to I(P), and therefore entails P. Hence i1 also entails P’’:
P’’ = ((A∨B)∨C))∧(¬A∨(B∨C)) = (B∨C)
But P’’, which belongs to S(P), would have been a better answer than P in

information state i1, so that i1 does not belong to I(P), contrary to the hypothesis.
Things are similar if W2 or W3 does not belong to i1 (by symmetry). Hence Max(P) =
{i0}, and P implicates i0.

This proof can be generalized to all formulas whose only logical operators are
disjunctions.

3. 2. Background concepts

As shown in section 1.4., answers lead to different kinds of implicatures, especially
regarding exhausitivity, depending on whether they are, intuitively speaking, positive
or negative. But this cannot make sense so far, as I have not said precisely what it is
for an answer to be “positive”. This is the goal of the present section.

I now assume that questions are all equivalent to something like:
Q: “For which x is P(x) true?”, where x is of any semantic type, and P is a certain

predicate (simple or complex) that can be built in a natural language.
I further assume that the domain of quantification is fixed and finite, and known to all
participants. Thus any relevant answer to Q can be translated into the following
propositional language LQ: let (ci)0< i < n+1 be an enumeration of  names for each of the
individuals of the domain. Then LQ is the propositional language with disjunction and
conjunction as its only binary connectors and based on the atomic
sentences (Pi)0< i < n+1, where Pi  translates P(ci).

Now, relevant answers to Q can be seen as sets of valuations of (Pi) 0< i < n+1. And
the relevant part of any information state can also be seen as a set of valuations. So we
can assimilate information states to sets of valuations, without loosing anything.

Definitions (see appendix):

1. Literal:  a literal is an atomic sentence or the negation of an atomic sentence. A
literal is positive if it is an atomic sentence, negative otherwise

2.  Sentence P favors literal L: a sentence or a proposition P favors a literal L iff
there is a valuation V such that V(P) = V(L) = 1 and V-L(P) = 0, where  V-L is defined
as the valuation which is identical to V except for the value it assigns to L.

3. Sentence P essentially mentions literal L: A sentence P essentially mentions a
literal L iff L occurs without a negation preceding it in every P' equivalent to P and
such that the scope of all negations occurring in P' is an atomic sentence.

4. positive sentence/positive proposition: a sentence or a proposition is positive
(resp. negative) iff it favors at least one positive (resp. negative) literal and no
negative (resp. positive) literal.

We can then prove the following theorems (see Appendix):
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Theorem 1: For any sentence P and any literal L, P favors L iff P essentially
mentions L

Theorem 2:  A sentence P is positive (resp. negative) iff P is equivalent to a
sentence which belongs to the closure of positive (resp. negative) literals under
conjunction and disjunction

Corollary: A sentence P is positive iff it is equivalent to a sentence P' which
contains no negation.

We therefore have two characterizations of positive answers: an answer is positive
if it is equivalent to a sentence which contains no negation, or, equivalently, if it
favors at least one positive literal and no negative literal. This equivalence will prove
helpful.

3. 3. The case of positive propositions: predicting exhaustification

The alternative set of any positive proposition is defined as the set of all positive
propositions14.

3. 3.1. An Example
Consider the following dialogue:
(10)  Among John, Peter, Mary and Sue, who will come?
        - Well, John will come, or Peter and Mary will come
I translate the answer into a propositional language containing four atomic

sentences A, B, C and D:
P = A∨( B∧C)
P quite clearly implicates Q : Q = (A∧¬B∧¬C∧¬D)∨(B∧C ∧¬A ∧¬D) i.e. “either

only John will come, or only Peter and Mary will”, which is exactly what
exhaustification in Groenendijk & Stokhof’s sense would yield.

What I will now prove is that Max(P) = {Q}, from which it indeed follows that P
implicates Q. First, I show that Q ∈  I(P), i.e. P is an optimal answer in S(P) in
information state Q. Suppose the speaker’s information state is Q. Q can be
represented as the following set of valuations, where a valuation is itself represented
as the set of atomic sentences that this valuation makes true: Q = {{A},{B, C}}.

By hypothesis, the speaker has to choose a proposition that belongs to the
alternative set. This proposition must be entailed by Q and be such that there is no
better proposition in the alternative set. Let Q’ be a positive sentence entailed by Q.
Necessarily the valuation represented by {A} is in Q’. But then, the valuation {A,B}
must be in Q’ too: if {A,B} were not in Q’, indeed, ¬B would be favored by Q’,
since there would be a valuation v making ¬B true in Q’ (namely v = {A}) and such
that the valuation v’ identical to v except over B (v’={A, B}) would not be in Q’; so
Q’ would favor a negative literal and not be positive, contrary to the hypothesis. By
the same reasoning, {A,C}, {A,D} {A,B,C}, {A,B,D}, {A,C,D} and {A,B,C,D} must
belong to Q’, and so does {B,C,D} (since {B,C} is in Q and therefore in Q’). So any
positive proposition entailed by Q must include the following proposition, i.e. be
entailed by it:
{{A}, {A,B}, {A,C},{A,D}, {A,B,C},{A,B,D}, {A,C,D},{A,B,C,D}, {B,C},

{B,C,D}}         (= P)
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But this set, which turns out to represent P, is a positive proposition which is
entailed by Q and which entails all other positive propositions that are entailed by Q
(as I have just shown). So P is the strongest positive proposition entailed by Q, i.e. Q
∈ I(P) (recall that I(P) is the set of all information states which make P an optimal
answer among positive answers ).

Second, I show that Max(P) = {Q}. This amounts to proving that Q entails all the
members of I(P). Assume there is an information state i which belongs to I(P) and is
not entailed by Q. Since i is not entailed by Q, then either {A} or {B, C} does not
belong to i. Suppose {A} does not belong to i. On the other hand, i belongs to I(P) and
therefore entails P. From which it follows that i entails P-{A}, i.e. i is included in the
following set of valuations:

P-{A}=
{{A,B},{A,C},{A,D},{A,B,C},{A,B,D},{A,C,D},{A,B,C,D},{B,C},{B,C,D}}

But this set is itself a positive proposition, since it can be checked that P-{A} favors
no negative literal. In fact, P-{A} can be written as: (A∧(B∨C∨D))∨(B∧C). So i
entails a positive proposition that is stronger than P, namely P-{A}, which contradicts
the hypothesis that i belongs to I(P). Things work similarly if {B,C} does not belong
to i. Therefore there is no such i.  From which it follows that Q entails all the
members of I(P). Q.E.D

3. 3. 2. Predicting exhaustification
In the general case, positive answers are predicted to be interpreted as exhaustive.

Definitions (see also the appendix):
1. Exhaustification:
Let P be any non-negative proposition, then the function Exhaust is defined as

follows:
Exhaust(P) = {V  V∈ P and there is no valuation V' in P such that V' ⊂ V}
This operator is the propositional counterpart of Groenendijk & Stockhof’s

exhaustivity operator.

2. Positive extension of a proposition P: for any non negative proposition P, there
is a unique positive proposition Q such that P entails Q and Q entails all the other
positive propositions that P entails (i.e. Q is the strongest positive proposition that
P entails). This can be shown by using the same reasoning as in the previous section:
namely, you get Q by adding to P all the valuations that are needed in order not to
favor any negative literal (see the appendix).  The result of this operation I call the
Positive Extension of P, or Pos (P).

For any P, Pos(P) = {V  there is a valuation V' in P such that V' ⊆ V} (recall that
a valuation is seen as a set of atomic sentences)

Facts (proved in the appendix): for any non negative proposition P,
1. If P is positive, Pos(P) = P
2. Pos (Exhaust(P)) = P
3. If P is a positive proposition and V a minimal member of P, then P –

{V} is a positive proposition too.



195

Theorem: if P is a positive proposition, then Max(P) = {Exhaust(P)}, and
therefore P implicates Exhaust(P).

Proof: We prove a) that Exhaust(P) ∈ Max(P), and b) that Exhaust P is the only
member of Max(P)

a) Let P be a positive proposition. I(P) is the set of states i making P an optimal
answer, i.e. such that P is the strongest positive proposition entailed by i, i.e. such that
P = Pos(i). Hence I(P) = {iPos(i)=P}.

Since Pos(Exhaust(P))=Pos(P)=P (by facts 1 and 2), Exhaust(P) ∈ I(P).
b) Ad absurdum: we want to show that Exhaust(P) entails all the other members of

I(P). Let’s assume, to the contrary, that there is a member i1 of I(P) such that
Exhaust(P) does not entail i1. Then there is a valuation in Exhaust(P) which does not
belong to i1, call it V. Given that i1 entails P, i1 also entails P-{V}. Since V, belonging
to Exhaust(P), is a minimal member of P, P-{V} is positive (by fact 3), and P-{V} is
therefore a positive proposition entailed by i1, from which it follows that P cannot be
the strongest positive proposition entailed by i1, i.e. P≠Pos(i1). Therefore i1 does not
belong to I(P), contrary to the hypothesis. QED.

3. 3. 3. Pair-list questions

Consider sentence (3) again (“Each of the students read Othello or King Lear”). If
(3) is understood as an answer to a pair-list question like “Which students read which
plays by Shakespeare?”, exhaustification predicts an exclusive reading for or. Note
that the translation of a certain natural language sentence into a sentence of
propositional logic will yield different results for different underlying questions (see
section 3.2.). In the case of the above pair-list question, but not in other cases, atomic
sentences represent elementary answers of the type ‘x read y’, and (3) will be
translated as something like (3’):

(3’) (A∨B)∧(C∨D) ∧(E∨F)∧……… ∧(G∨H)

Exhaustification of (3’) yields the desired result (exclusive reading for all the
disjunctions). This context-dependency explains why judgments are not uniform.

3. 4. Non-positive propositions

We have seen in 1.4 that negative answers are not exhaustified, but nevertheless
trigger some implicatures.  This is straightforwardly predicted if the alternative set of
a negative proposition P consists in the closure under disjunction and conjunction of
all the literals that P favors. The asymmetry between negative and positive answers
then boils down to the fact that positive answers are compared to all positive answers,
while negative answers are compared only to a proper subset of the negative answers.

Regarding answers that are neither positive nor negative, the data are quite
complex, and judgments are not very robust. A good strategy is to look at the clearest
cases, find which principles could account for them and then let these principles
decide for the other cases:

(11) a. Among Peter, Mary and Jack, who came ?
        b. Peter, but not Mary
>> No exhaustivity effect: we infer nothing regarding Jack
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(12) a. Among the philosophers, the linguists and the chemists, who came?
        b. Between two and five linguists
>> Exhaustivity effect : we infer that no chemist and no philosopher came.

One difference between (11) and (12) is that, even though both are neither positive
nor negative, (12) is quasi-positive in the following sense:

Def 1: A proposition P strongly favors a literal L if P favors L and P does not
favor the negation of L

Def 2: A proposition P is quasi-positive if P does not strongly favor any negative
literal.

If we want to predict that only quasi-positive sentences lead to exhaustification, we
may adopt the two following rules, which cover all the cases:

If P is quasi-positive, P's alternative set consists in the union of the set of
positive propositions and {P} itself.

If P is not quasi-positive, then P's alternative set consists in the closure under
union and intersection of all the literals that P favors.

These rules make the following predictions (assuming the question under
discussion is the same as in (12)):

 (13) Between two and five linguists and no philosopher came.
>> No exhaustivity effect: nothing should be implicated regarding chemists
 (14) Between two and five linguists and three philosophers came
>>Exhaustivity effect: suggests that no chemist came
(15) Three philosophers but less than two chemists came
>>No-exhaustivity effect: nothing should be inferred regarding linguists.

Though judgments are not so clear, an informal inquiry seems to indicate that most
people have the expected intuitions. More work needs to be done in order to
understand what is really going on here15.

4. Conclusion
I have offered a precise formalization of the Gricean reasoning that underlies scalar

implicatures, and exhaustification of answers. I have shown that the facts regarding
exhaustification can be directly derived from the Gricean reasoning16. The only
stipulations that were needed concern the rules according to which alternative sets are
built. Yet the original notion of "scalar alternatives" is also stipulative. It remains to
be seen whether the role played by polarity (namely, the distinction between positive
and non-positive answers) can be derived in a more principled way. I suspect that
introducing a notion of utility in our model of information processing, as Nilsenova &
Van Rooy (2002) do in order to account for the pragmatic effects of polar questions,
could help explain why "positive" and "negative" answers pattern asymmetrically.
Another topic that must be investigated is the following one: a sentence like "John
will come or John and Mary will" expresses the same proposition as "John will
come", but is not interpreted in the same way. This shows the limitations of any
procedure that only takes into account the literal semantic values of sentences, and not
their actual phonological and syntactic form. I will explore some possible solutions to
this problem.
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Finally, let me point out that while the procedure I have defined is context-
dependent (since implicature computation depends on what the question under
discussion is), it is possible to devise a very similar procedure that would not be
context-dependent. These two procedures, taken together, can provide us with an
analytic tool for investigating to what extent scalar implicatures are generalized rather
than extremely sensitive to context.

Appendix
1. Language

Let L be the following propositional language:
1.1. Vocabulary

i) Atoms : p1, p2, ….., pn                   (N.B. : there is a finite number of atoms)
ii) ⊥, T, (, ), [, ], ¬, ∧, ∨

1.2. Syntax
i) Literals: if p is an atom, then [p] is a literal and [¬p] is a literal. ⊥ , T are

literals.
ii) Formulae:

- if L is a literal, then L is a formula
- For any two formulae F and G, ‘(F ∨ G)’ is a formula and ‘(F ∧ G)’ is

a formula.
Terminology:  A positive literal is a literal of the form [p]; a negative literal is a

literal of the form [¬p]. ⊥ and T are neither positive nor negative.
Notation: Let L be a literal whose atom is p. Then –L (the negation of L) is

defined as follows :
–L = ‘[¬p]’ if L = ‘[p]’ and –L = ‘[p]’ if L = ‘[¬ p]’.

1.3. Semantics
A valuation V is a function from all formulae to {0, 1} such that:

1) V(⊥) = 0
2) V(T) = 1
3) For any atom p, V([¬p]) = 1 – V([p])
4) For any formula F and any formula G, V ((F ∨ G)) = max (V(F), V(G))
5) For any formula F and any formula G, V ((F ∧ G)) = min (V(F), V(G))

A valuation is uniquely defined by the values it assigns to the positive literals.
Hereafter, we treat valuations as functions from atoms to {0, 1}.

2. Definitions

Def 1: For any valuation V and any literal L distinct from ⊥ and T, we define V-L

as the unique valuation that is exactly like V except over the atom of L:
- For any atom p not occurring in L , V- L([p]) = V ([p])
- V- L(L) = 1 – V(L) (= V(-L), see below)
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Def 2 (favoring) : Let F be a formula and L be a literal distinct from ⊥, _. Then F
favors L if there exists a valuation V such that V(F) = V(L) = 1 and such that V-L(F) =
0

Def 3 (essentially mentions) : Let F be a formula and L be a literal distinct from ⊥
and _,. Then F essentially mentions L if L occurs in every formula F’ equivalent to F.

Def 4 (positive proposition): a positive proposition is a proposition that favors no
negative literal and is distinct from ⊥ and T.

3. Theorems

Theorem 1: For any formula F and any literal L distinct from ⊥ and T, F
essentially mentions L if and only if F favors L, and there exists a formula F’
equivalent to F in which all the literals that F favors occur, and only those.

The proof relies on three lemmas:

Lemma 1: If F favors L, then F essentially mentions L.
Lemma 1.a: If F favors L then L occurs in F (equivalently : if L does not occur

in F, then F does not favor L)
Proof:  Let L be a literal. We prove by induction that for any formula F, is F

favors L, then L occurs in F:
i) Suppose F is itself a literal. If F is distinct form L, then F does not favor L. (In

particular, if F = - L, then F does not favor L). Therefore, if F favors L, then F = L,
and L occurs in F

ii) Suppose F and G are formulae such that if F favors L, then L occurs in F and if
G favors L, then L occurs in G. We prove that if ‘F∨G’ favors L, then L occurs in
‘F∨G’, and that if ‘F∧G’ favors L, then L occurs in ‘F∧G’.

- Assume ‘(F∧G)’ favors L. Then there exists a valuation V such that V((F ∧ G))
= V(L) = 1 & V-L((F∧G)) = 0, i.e. min ((V(F), V(G)) = V(L) = 1 & min ((V-L(F), V-

L(G)) = 0. From which it follows that V(F) = V(G) = V(L) = 1 and either V-L(F) = 0 or
V-L(G) = 0. Therefore F favors L or G favors L. Therefore L occurs in F or in G,
hence in ‘(F ∨ G)’.

- Assume ‘(F∨G)’ favors L, Then there exists a valuation V such that V((F∨G)) =
V(L) = 1 & V-L((F∨G)) = 0, i.e. max ((V(F), V(G)) = V(L) = 1 & max ((V-L(F), V-

L(G)) = 0. From which it follows that V-L (F) = V-L(G) = 0 and either V(F) = V (L) = 1
or V(G) = V(L)= 1, i.e. F favors L or G favors L. Therefore L occurs in F or in G,
hence in ‘(F ∨ G)’. QED

Proof of Lemma 1: Let F be a formula and L be a literal that F favors. Suppose F’
is a formula that is equivalent to F. Then F’ favors L, and therefore L occurs in F’
(Lemma 1.a). Therefore if F favors L, then F essentially mentions L. QED

Lemma 2 : For any formula F, there exists a formula F’ equivalent to F in which
the only literals that occur are those favored by F.

Proof of Lemma 2: We consider two cases;
 i) First case : F is a tautology or a contradiction. Then F favors no literal at all and

is equivalent either to ⊥ or to T, which are formulae in which the only literals that
occur are those favored by F (in that case, no literal at all is favored by F).

ii) Second case : F is contingent. We will construct a disjunctive normal form F’
equivalent to F in which only the literals favored by F occur.

Let us say that two valuations V1 and V2 are F-equivalent  if :
V1(F) = V2(F) = 1 and for any literal L favored by F, V1(L) = V2 (L).
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This equivalence relation defines a partition over the set of the valuations making
F true. Each equivalence class can be represented by a partial valuation Vi that gives a
value only to the atoms occurring in the literals favored by F. Let us consider the set E
= {V1,….., Vn} consisting of all these partial valuations. Let K ={L1, …, Lm} be the
set of the literals favored by F. For any i between 1 and n, let Ki be the subset of K
such that Vi makes each member of Ki true, i.e. Ki = {L: L∈K & Vi(L)=1}. Let Di be
the conjunctive formula such that every member of Ki occurs once in Di, in
“increasing order”, i.e. for any j  between 1 and m - 1,  Lj occurs immediately on the
left of Lj+1 . Let D be the set {Di,…, Dn}. Let F’ be the formula consisting of the
disjunction of all the members of D, in increasing order. F’ = ‘D1 ∨ …. ∨ Dn’.

Claim : F’ is equivalent to F
i) F’ entails F.

Let V be a valuation such that V(F’) = 1. Then V makes at least one member of D
true, call it Di. Since Di is a conjunctive formula, V makes each of the literals
occurring in Di true, i.e. V makes each member of Ki true.  Therefore it belongs to one
of the equivalent classes defined by the relation “equivalent for F”, namely, the
equivalence class represented by the partial valuation Vi. Therefore V(F) = 1.

ii) F entails F’.
Let V be a valuation such that V(F) = 1. Let Vi be the partial valuation that is

identical to V with respect to all the atoms that occurs in the literals favored by F and
does not assign a value to other atoms. Let Di be the corresponding conjunctive
formula, which necessarily occurs in F’. By construction, Vi(Di) = 1 and therefore
V(Di) = 1. Therefore V makes true at least one of the conjunctive formulae occurring
in F’, from which it follows that V(F’) = 1

F’ is, by construction, a normal disjunctive form in which the only literals that
occur are those favored by F. It follows from Lemma 1 that all the literals favored by
F occurs in F’. QED

Lemma 3: For any formula F and any literal L distinct from ⊥ and T, F favors L if
and only if F essentially mentions L

a) if F favors L, then F essentially mentions L (Lemma 1)
b) If F essentially mentions L, then F favors L

By contraposition : if F does not favor L, then F does not essentially mention L
Suppose F does not favor L. Let F’ be a formula equivalent to F in which only the

literals favored by F occur (such a formula exists by Lemma 2). Then L does not
occur in F’, and therefore F does not essentially mention L. QED

Proof of Theorem 1: Theorem 1 follows from Lemma 1, Lemma 2 and Lemma 3.

Theorem 2: if F favors only positive literals, then there exists a formula F’
equivalent to F that contains no negation.

Proof: obvious from theorem 1.
Theorem 2 amounts to saying that any positive proposition can be expressed by a

formula that contains no negation. Conversely, any formula that contains no negation
and in which neither ⊥ nor T occurs expresses a positive proposition.

Theorem 3: for any non negative-proposition P, there is a unique positive
proposition Q such that P entails Q and Q entails all the other positive propositions
that P entails (i.e. Q is the strongest positive proposition that P entails).
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We now represent a valuation. as the set of atoms it makes true. (A valuation
defined as a function from atoms to truth-values is simply the characteristic function
of a set of atoms). Propositions are sets of valuations, i.e. sets of sets of atoms.

We will show that for any non-negative P,  Pos(P) as defined below is the unique
positive proposition that P entails and that entails all the other positive propositions
entailed by P.

Def 5 (positive extension of a non-negative proposition):
For any non-negative proposition P, Pos(P) = {V: V is a valuation such that there

exists V’∈P such that V’ ⊆ V}

Lemma 4: for any positive proposition Q, if a valuation V belongs to Q, then any
superset V’ of V belongs to Q.

Proof of lemma 4:  Let Q be a positive proposition, and V be a member of Q. We
first show that for any atom p that is not a member of V, V ∪ {p} belongs to Q.
Suppose V ∪ {p} does not belong to Q. Then V is a valuation making both Q and
[¬p] true and such that V-[¬p], i.e. V∪{p}, makes Q false. Therefore Q favors a
negative literal, namely [¬p], contrary to the hypothesis. Hence for any valuation V
belonging to Q, every valuation V’ obtained from V by adding one atom to V is also
in Q. By repeating the same reasoning to all the valuations obtained from V by adding
one atom, we conclude that any valuation V’’ obtained from V by adding two atoms
is also in Q, and so on for valuations obtained from V by adding a finite number of
atoms. Since valuations are finite sets, it follows that all the supersets of V are in Q.
QED

Proof of theorem 3: Let P be a non-negative proposition. Recall that P is viewed
as a set of valuations. Let Pos(P) ={V : there exists V’ ∈ P such that V’ ⊆ V}. In
other terms Pos (P) is the set consisting of all the  supersets of the members of P.

We prove that Pos(P) is the unique positive proposition entailed by P and entailing
all the propositions entailed by P. Keep in mind that ‘A entails B’ now means the
same as ‘A is included in B’.

We show that a) P entails Pos(P), b) Pos(P) is a positive proposition, and c) Pos(P)
entails all the positive propositions entailed by P

a) P entails Pos (P) : obvious from the definition of Pos(P)
b)  Pos (P) is a positive proposition.
i) if a valuation V belongs to Pos (P), then any superset of V belongs to Pos (P).

Indeed, if V belongs to Pos(P), then V is a superset of a member of P. Therefore any
superset of V is also a superset of a member of P, and hence belongs to Pos(P).

ii) Ad absurdum: Suppose Pos (P) favors a negative literal L = [¬p]. Then Pos(P)
contains a valuation V such that V  makes L true, i.e. such that p does not belong to
V, and such that V-L does not belong to P. But V-L is the valuation identical to V
except over p, i.e. V-L = V ∪  {p}.  V-L is therefore a superset of V, and thus also
belongs to Pos(p), given i) >> contradiction

c) Pos(P) entails all the positive propositions entailed by P.
Suppose Q is a positive proposition entailed by P, i.e. such that P is included in Q.

By Lemma 4 and the fact that P entails Q, all the supersets of the valuations belonging
to P also belong to Q. Since all the elements of Pos(P) are supersets of the elements of
P, they all belong to Q. QED
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Def 6 (exhaustification): the function Exhaust is defined as follows; for any non-
negative proposition P, Exhaust(P) = {V  V∈ P and for any valuation V' in P, if V’⊆
V, then V’=V}

In other words, Exhaust(P) is the set of all the minimal members of P (where
minimal is defined w.r.t. the ordering relation ⊆)

Facts to be proved: for any non-negative P,
1. If P is positive, Pos(P) = P
2. Pos (Exhaust (P)) = Pos (P)

3. If P is a positive proposition and V a minimal member of P, then P– {V} is a
positive proposition.

Proof of Fact 1:
Obvious : if P is positive, then P is the strongest positive proposition entailed by P

Proof of Fact 2:
We first prove the following lemma:

Lemma 5: Any member V of P is a superset of some member of Exhaust(P).
Ad absurdum: Suppose that there is a valuationV1 in P that is not a superset of a

member of Exhaust(P). Then V1 does not belong to Exhaust(P), and there is therefore
(by definition of Exhaust) a valuation V2 that is properly included in V1 and belongs
to P. But this valuation itself is not a member of Exhaust(P) (otherwise V1 would in
fact be a superset of a member of Exhaust(P)). Consequently, there is a valuation V3

properly included in V2 that is a member of P but not of Exhaust(P). By iteration of
this reasoning, there is an infinite sequence (Vi)i∈N such that each of the members of
the sequence is properly included in its predecessor and all of them belong to P. Since
valuations are finite sets, however, there is an integer n such that Vn is the empty set
(since each valuation has strictly less members than its predecessors); but then Vn+1

cannot be properly included in Vn, which is contradictory. QED
In order to prove Fact 2, we prove first that a) Pos (Exhaust (P)) ⊆ Pos (P) and  b)

that Pos(P) ⊆Pos(Exhaust(P))
a)  Pos (Exhaust (P)) ⊆ Pos (P)
Let V be a member of Pos(Exhaust (P)). Then V is a superset of some member of

Exhaust (P). Call V’ this member of Exhaust (P). Since Exhaust(P) ⊆ P, V’ is also a
member of P and therefore V is a superset of a member of P. Consequently, V ∈
Pos(P). QED

b)  Pos(P) ⊆ Pos(Exhaust(P))
Let V be a member of Pos(P). Then there is a V’ in P such that V’⊆V. By Lemma

5, there is a valuation V’’ in Exhaust (P) such that V’ is a superset of V’’.  Therefore
V’ belongs to Pos(Exhaust(P)). Since V is a superset of V’, by lemma 4, V also
belongs to Pos(Exhaust(P)). QED

Proof of Fact 3:
Let P be a positive proposition and V be a minimal member of P, i.e. V ∈

Exhaust(P).
We prove that P –{V} = Pos (P – {V}), from which it follows that P – {V} is

positive.
Assume V1 ∈  P –{V}. Then V1 ∈  P, and, by Lemma 4 and the fact that P is

positive, any superset of V1 also belongs to P.  Let V2 be a superset of V1 (which
therefore belongs to P). We show that V2∈P –{V}.  We consider two cases.
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Case i): V2 = V1. Then V2 ∈ P – {V}
Case ii): V1 is properly included in V2. Then necessarily V2≠V; indeed, if V2 = V,

then V would not be a minimal member of P, since V1 would be a proper subset of V
belonging to P. Since V2 ≠ V and V2 ∈ P, it is also the case that V2 ∈ P –{V}.

Therefore any valuation V1 belonging to P – {V} is such that all its supersets also
belong to P – {V}, i.e. Pos(P – {V}) ⊆ P–{V}; since P -{V}  ⊆ Pos(P –{V}), P –{V}
= Pos (P – {V}). QED
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1 Gazdar (1979)

2 Sauerland (2002)

3 In section 3.3.3, I account for the fact that this inference is not systematic.

4 It has been observed long ago, for instance in Gazdar (1979), that a disjunctive statement is

generally taken as indicating that the speaker is uncertain regarding the disjuncts’ truth-values.

5 Sauerland’s paper has appeared in Linguistics and Philosophy in 2004, but was already available

to me in 2003.

6 If all the sentences were  alternatives of each other, then no sentence could ever be interpreted as

conveying more information than what it explicitly says: a speaker obeying the maxim of quantity

should always chose to use a sentence whose literal meaning contains all the information he wants to

express.

7 I reformulate Groenendijk & Stockhof’s exhaustivity operator in more simple terms, but the

difference is immaterial.

8 Since the first draft of this paper was written, Robert van Rooy and Katrin Schulz have also

attempted to derive the exhaustivity facts from Gricean maxims, in a very simial way. See van Rooy &

Schulz (2004)

9 As my formulation makes clear, I am now adopting the simplifying view that what the hearer

compares are propositions.

10 The exact definition of alternative sets is the topic of section III.

11 Assuming that A and B are logically independent.

12 As the reader will have noticed, I treat sentences both as sentences of the object-language and as

names (in the meta-language) of propositions, i.e. names of sets of worlds, in which case conjunction

and disjunction are understood as intersection and union.

13 I do not give the proof here, due to lack of space.

14 It should be clear that the alternative set is dependent on the question under discussion, since

“positivity” is defined in terms of the propositional language derived from the question under

discussion via the translation procedure defined above.

15 I do not give the proof that my two rules achieve the results I claim they do, due to lack of space.
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16 As an anonymous reviewer noticed, I have not addressed all the cases that Chierchia pointed out

as problematic for the standard neo-Gricean procedure. Once again, limitation of space prevents me

from doing so. Let me mention that a more sophisticated version of my proposal is able to predict the

phenomenon of conditional strengthening (inference from “if A, then B” to “B if and only if A”).


