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Abstract: We experimentally demonstrate an 100 Gbit/s hybrid optical

fiber-wireless link by employing photonic heterodyning up-conversion of

optical 12.5 Gbaud polarization multiplexed 16-QAM baseband signal with

two free running lasers. Bit-error-rate performance below the FEC limit is

successfully achieved for air transmission distances up to 120 cm.
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1. Introduction

Hybrid optical fiber-wireless transmission systems with ultrahigh capacities will serve as the

key building block to support the next generation truly user-centered networking. Users will

create a virtual ’personal atmosphere’ of connectivity to the world, that will follow the users

whether they are on their workplace, traveling or at home. This user personal atmosphere will

be powered by ubiquitous access and control to services and application enabled by seamless

broadband wireless-fiber connections to a large range of devices in their near vicinity. To re-

alize the seamless integration of wireless and fiber-optic networks, the wireless links needs to

be developed to match the capacity of high-speed fiber-optic communication systems, while

preserving transparency to bit-rates and modulation formats [1].

Currently, the W-band (75-110 GHz) has attracted increasing interest as a candidate radio

frequency (RF) band to provide wireless communication links with multi-gigabit data trans-

mission. Technology roadmap studies show that there is a conceivable demand in the years to

come for 100 Gbit/s wireless capacity links [2]. Among current and emerging applications to

use such high capacities are wireless closed-proximity transmission links and short range wire-

less communications. As an example, transmission of super Hi-Vision format is expected to

require a transmission speed of 24 Gbit/s [2]. These trends accompanied by the growing de-

mand for flexible access to cloud services with high speed peripherals motivate us to look for

technologies and techniques to realize 100 Gbit/s fiber-wireless transmission links.

Wireless data transmission above 10 Gbit/s with simple amplitude shift-keying modulation

(ASK) in the W-band have been demonstrated by mainly using millimeter-wave electronics [3]

and hybrid photonic-electronic techniques [4, 5]. More advanced modulation formats in the

W-band such as differential phase shift-keying (DPSK), binary/quadrature phase shift-keying

(BPSK/QPSK) with data rates of 10 Gbit/s and 20 Gbit/s are reported in [6–8]. Most recently,

40 Gbit/s 16-level quadrature amplitude modulation (16-QAM) wireless transmission in the

W-band is presented [9]. We have previously demonstrated 40 Gbit/s signal generation in the

W-band by employing photonic up-conversion of all-optical frequency division multiplexed

(OFDM) QPSK signals, with detection performed by photonic down conversion supported by

digital coherent demodulation [10]. Regarding achieved air transmission distances for bit-rates

above 20 Gbit/s in the W-band, so far 20 cm for 20 Gbit/s ASK transmission [5] and 3 cm for

40 Gbit/s 16-QAM transmission [9] are reported. However, both capacity and wireless trans-

mission distance need to be further developed.

In this paper, we report on a hybrid optical fiber-wireless transmission link achieving

100 Gbit/s by transparent photonic up-conversion of a polarization multiplexed (PolMux) 16-

QAM optical baseband signal with wireless transmission in the W-band. Bit-error rate (BER)

performance below 2× 10−3 is successfully achieved for wireless transmission distances up

to 120 cm. Considering a 7% FEC overhead, error free transmission of an overall net bit rate

of 93 Gbit/s can be expected. We believe this is a breakthrough in hybrid optical fiber-wireless

transmission systems that open the door for ultra-high capacity short range and close-proximity

user-centered networking.

2. Principle of heterodyne up-conversion and two stage down-conversion

In our proposed system, the RF signal is generated by direct heterodyning with two free run-

ning lasers. After the wireless transmission, two stage down-conversion is implemented before

signal demodulation. First stage is electrically down-converting the RF signal to a lower in-

termediate frequency (IF) and the second stage is implemented in digital domain using digital

signal processing (DSP) method. The block diagram of this architecture is shown in Fig. 1.

At the transmitter, an I/Q modulator is used to generate signals with high level modulation

format. The inphase and quadrature branches are respectively modulated with multilevel signals
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Fig. 1. Block diagram of hybrid optical fiber-wireless system using heterodyne up-

conversion and two stage down-conversion.

I(t) and Q(t). The output optical baseband signal at frequency ω1 from the I/Q modulator is

combined with a carrier frequency generating laser with frequency ω2 before the photodiode.

The optical baseband signal Ês(t) and the carrier frequency generating laser signal Êc(t) can

be represented as:

Ês(t) =
√

Ps · [I(t)+ jQ(t)] · exp[− j(ω1t +φ1(t))] · ês (1)

Êc(t) =
√

Pc · exp[− j(ω2t +φ2(t))] · êc (2)

where Ps, Pc are optical power of the signal laser and the carrier frequency generating laser,

φ1(t) and φ2(t) are phases of the signal and carrier frequency generating laser, and ês , êc are

the polarization unit vectors.

After heterodyne beating at the photodiode, the generated electrical signal consists of a base-

band component and a RF signal with carrier frequency ωRF = |ω1 −ω2|. So the RF signal

transmitted into the air can be expressed as:

ERF(t) = 2
√

PsPc · [I(t)cos(ωRF t +φRF(t))+Q(t)sin(ωRF t +φRF(t))] · êsêc (3)

with phase of φRF(t) = φ1(t)−φ2(t). At the receiver, an electrical local oscillator (LO) (Eq. (4))

signal is mixed with the received RF signal at a balanced mixer to firstly down-convert the RF

signal into an IF signal. Equation (5) describes the down-converted IF signal.

ELO(t) =
√

PLO · cos(ωLOt +φLO(t)) (4)

EIF(t) = 〈ERF(t) ·ELO(t)〉=
√

PsPcPLO · [I(t)cos(ωIF t +φIF(t))

+Q(t)sin(ωIF t +φIF(t))] · êsêc (5)

where angular frequency ωIF equals to ωRF −ωLO and phase φIF(t) equals to φRF(t)−φLO(t).
The angle brackets denote low-pass filtering used for rejecting the components at ωRF +ωLO.

The IF signal is then converted into the digital domain for digital down-conversion and demod-

ulation. The signal after the digital down-converter can be expressed as:

ERx(t) = 〈EIF(t) · exp( jωIF t)〉= 1

2

√

PsPcPLO · [I(t)+ jQ(t)] · exp(− jφIF(t)) · êsêc (6)

It is noted that the system loss is not considered in the expressions. From Eq. (6) we can see

that the transmitted baseband signal I(t) + jQ(t) can be recovered at the DSP receiver. The

accumulated phase offset and phase noise during transmission is contained in the term φIF(t),
which can be later corrected in DSP [10]. Maximum value of the RF signal power is achieved

when the polarization states ês and êc are aligned.

3. Experimental setup

Figure 2 presents the experimental set-up of the W-band wireless link under consideration.

We adopt the 16-QAM baseband transmitter proposed in [11]. The ECL feeds a integrated

LiNbO3 double-nested Mach-Zehnder modulator (MZM) with Vπ of 3.5 V. The in-phase (I) and

quadrature (Q) branches of the modulator are driven by 12.5 Gb/s four-level electrical signals.
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Fig. 2. Experimental setup for generation and detection of 100 Gbit/s PolMux 16-QAM

wireless signals in W-band. (The eye diagrams of the 16-QAM signal before and after

polarization multiplexing are shown in the inset).

Each four-level signal is derived from two copies of pseudorandom bit sequences (PRBS) of

length 215 − 1, decorrelated with a relative delay of 6 bit periods. The two four-level signals

were decorrelated by 33 symbol periods before being applied to the modulator. The output

of the modulator is a 16-QAM optical baseband signal with a data rate of 50 Gbit/s, whose

capacity is doubled to 100 Gbit/s by implementing polarization multiplexing.

Fig. 3. Optical spectra of the 16-QAM signal and carrier frequency generating laser signal

before the photodiode.

Up-conversion to the W-band is performed by direct heterodyning in a fast response 100 GHz

bandwidth photodetector (PD, u2t XPDV4120R). An erbium-doped fiber amplifier (EDFA)

is used to boost the signal power before heterodyne beating. Heterodyning is performed for

each of the polarization states (X and Y) of the optical baseband signal with the correspon-

dent aligned polarization state of an carrier frequency generating laser signal. An ECL with

100 kHz linewidth is used as the carrier frequency generating laser with a wavelength separa-

tion of 0.7 nm from the PolMux 16-QAM optical signal, resulting in an 87.5 GHz central carrier

frequency for the up-converted W-band wireless signal. Figure 3 shows the optical spectra of

the signals before the PD.

At the wireless transmitter side, each up-converted signal, corresponding to the X and Y

PolMux components, is fed to a W-band horn antenna with 24 dBi gain. The two transmitter

antennas radiate simultaneously facing a receiver antenna. Detection is performed aligning a

transmitter-receiver antenna pair at a time by aligning the receiver angle to a given transmitter

antenna. No crosstalk is observed from the second antenna due to high directivity of the system.

After air transmission, the signals are received by a horn antenna with 25 dBi gain and amplified

by a W-band 25 dB gain low-noise amplifier (LNA) (Radiometer Physics W-LNA) with a noise

figure of 4.5 dB. Subsequently, electrical down-conversion is performed by using a W-band

balanced mixer driven by a 74 GHz sinusoidal LO signal obtained after frequency doubling

from a 37 GHz signal synthesizer (Rohde & Schwarz SMF 100A). In this way, the detected

wireless signal located in the 75-100 GHz frequency region is translated to the 1-26 GHz band

with a central frequency around 13.5 GHz. Analog-to-digital conversion is performed by an
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Fig. 4. Electrical spectra of (a) received IF signal and (b) after digital down-conversion and

filtering.
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Fig. 5. (a). Wireless transmitter: High-speed photodetector and W-band horn antenna; (b)

Wireless receiver: W-band antenna, LNA, mixer (c) Global view of the wireless link setup

with both the wireless transmitter and receiver.

80 GS/s real-time digital sampling oscilloscope (DSO, Agilent DSAX93204A) with 32 GHz

analog bandwidth. Offline signal demodulation is performed by a DSP-based receiver, con-

sisting of frequency down conversion, I/Q separation, carrier recovery and filtering, equalizer,

symbol decision and BER tester [10]. Figure 4a and Figure 4b shows the electrical spectra of

the received IF signal and the signal after digital down-conversion and low pass filtering with

cutoff frequency of 0.75×baud rate, respectively. From the figures it can be seen that there are

narrow lobes within the main lobes of the signal spectra, resulting from the delayed PRBS at the

16-QAM baseband transmitter as well as the fast frequency shifting after heterodyning beating

up-conversion. The photographs of the wireless transmitter, receiver and the whole wireless

setup are shown in Fig. 5a, 5b and 5c, respectively.

4. Results and discussions

Bit-error rate (BER) measurements are performed for both cases of single polarization (without

polarization multiplexing) and PolMux 16-QAM signals achieving total bit rate of 50 Gbit/s

and 100 Gbit/s respectively, with total number of 320000 bits for error counting. The BER

results are shown in Fig. 6 as a function of the received optical power into the photodiodes for

a given air transmission distance d.

For the single polarization 16-QAM case, Fig. 6a presents the BER results for transmission

distances of 50 cm, 150 cm and up to 200 cm. As we can see from Fig. 6a, considering a 7%

FEC overhead can potentially be effective for BER of 2× 10−3, error free transmission of net

data rate of 46.5 Gbit/s is achieved for all air transmission cases. For the case of PolMux, the

separation between the two transmitting antennas is 36 cm (see Fig. 2) while air transmission

is measured for a distance d to the receiver antenna of 50 cm, 75 cm and 120 cm. Longer

transmission distances were hampered by power budget limitation. The BER performance of

100 Gbit/s PolMux 16-QAM signal is shown in Fig. 6b, by averaging the BER of both X and
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(a) (b)

Fig. 6. Measured BER curves versus optical power into photodiode for: (a) 50 Gbit/s single

polarization 16-QAM, (b) 100 Gbit/s PolMux 16-QAM.

(a) (b)

Fig. 7. Constellations of received signals of (a) X-branch and (b) Y-branch after 120 cm

wireless transmission (8 dBm input power into PD).

Y branches. From the figure we can observe that a BER value below 2× 10−3 is achieved at

1.5 dBm, 3.5 dBm and 5.5 dBm received optical power at PD for air transmission distance of

50 cm, 75 cm and 120 cm, corresponding to radiated RF power of ∼-23 dBm, -19 dBm and

-15 dBm, respectively. It is noted that far field propagation takes places at air distances more

than 36.8 cm by taking into account the type of antennas used in the experiment.

Comparing the BER performance at the BER of 2×10−3 for 50 cm air transmission of single

polarization in Fig. 6a and PolMux in Fig. 6b, we attribute the observed 0.5 dB optical power

penalty to imperfect separation of the two polarization states in the beam splitter used in the

up-conversion stage. Figure 6b also indicates the required optical power to achieve 2× 10−3

BER at 120 cm is 6 dBm, corresponding to an equivalent isotropically radiated power (EIRP)

of 12.5 dBm. We believe that longer air transmission distances can be achieved by using a W-

band power amplifier at the transmitter and a higher gain LNA at the receiver side. Figure 7

shows the received 16-QAM constellations of the X and Y branches after 120 cm wireless

transmission at 8 dBm optical power, with BER of 3.2×10−4 and 3.1×10−4, respectively.

5. Conclusion

100 Gbit/s wireless transmission in the 75-110 GHz band employing photonic generation is suc-

cessfully demonstrated with air transmission distance of 120 cm. A dual-polarization 16-QAM

baseband optical signal is up-converted by optically heterodyning with a free-running optical

carrier generating laser to generate 100 Gbit/s at 87.5 GHz center wireless carrier frequency.

This is the highest achieved capacity for a W-band wireless link, to our best knowledge.
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