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Abstract—We demonstrate DML-based net 325-Gb/s at back-
to-back and 321.24-Gb/s after 2-km standard single-mode fiber
transmissions for >300-Gbps/λ short-reach optical interconnects.
Our net rate performance denotes an increase of ∼34% compared
to our previous works, while the pre-FEC rates are >400 Gbps.
The DML transmitter is based on a PPR-enhanced, >100-GHz-
bandwidth DML, fabricated by our novel membrane-III-V-on-
SiC technology. Also wide-band, entropy-loaded DMT modula-
tion is utilized based on a novel adaptive algorithm and via a
digitally-preprocessed analog multiplexer. These results pave the
way towards low-cost and energy-efficient Terabit Ethernet and a
significant step towards achieving DML-based 400-Gbps/λ IM/DD
systems in the future.
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I. INTRODUCTION

T
HE surging traffic growth in data center networks imposed

by the increasing video and cloud content push future

standardizations, such as the Terabit Ethernet (TbE) [1], to

extend the line rate requirements beyond 200-Gbps per channel

with the possibility of relying on 300- or 400-Gbps/channel in

the near future. Even though current optical coherent systems

can support such a trend in terms of throughput, intensity-

modulated directly-detected (IM/DD) systems are more suitable

to meet additional stringent requirements related to cost-per-bit,

power consumption, and device footprints. In particular, IM/DD

systems that utilize wide-bandwidth directly-modulated lasers

(DMLs) [2]–[5] are arguably the most energy-efficient approach,

which could pose such lasers among the leading technologies to

support ICT growth in the future.

Recently we demonstrated the first-ever DMLs capable of

achieving modulation bandwidths in excess of 100 GHz [5],

which allowed us to reach 256-Gbps (net ∼240-Gbps) 4-level

pulse amplitude modulation (PAM-4) transmissions [5]. This

unprecedented performance was owned to our novel membrane-

III-V-on-SiC technology [6] and a photon-photon resonance

(PPR)-supporting compound-cavity design. In particular, our

membrane-III-V-on-SiC technology benefits from both a high

optical confinement factor and from the high thermal conduc-

tivity properties of the SiC substrate.

Meanwhile, techniques to expand the electrical signaling and

the modulation bandwidth are in need in order to keep pace with

fast-growing bandwidths of photonic transceivers [7]–[14]. Re-

garding the electrical bandwidth, our previously-demonstrated

digitally pre-processed analog multiplexer (AMUX) [7]–[9] can

effectively double the available electrical bandwidth and have

achieved analog bandwidths in excess of 100-GHz [9]. On

the other hand, the signaling can benefit better from multi-

carrier/band modulations [10]–[14] compared to single-carrier
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TABLE I
DATA RATES ACHIEVED IN THIS WORK

formats such as PAM-4, as the former match the available

frequency-dependent signal-to-noise ratio (SNR) (caused, e.g.,

by PPR) better. In particular, the application of probabilistically-

shaped (PS) constellations [15] in a sub-band/carrier basis –

commonly referred to as “entropy loading” (EL) [10]–[12]–,

provides additional flexibility in terms of networking and achiev-

able rate.

By combining an adaptive algorithm for EL discrete multi-

tone (EL-DMT) modulation with an AMUX for driving a

>100-GHz bandwidth DML-on-SiC, we successfully demon-

strated net 325-Gb/s and 321.24-Gbps at back-to-back (BTB)

and after 2-km of standard single-mode fiber (SSMF) transmis-

sions, respectively, surpassing our previous net rate by ∼34%

[16]. As listed in Table I, pre forward-error correction (FEC)

rates actually exceeded 400 Gbps. In this extended paper, we ex-

pand on the obtained results of [16], while additionally providing

a detailed description of a novel adaptive EL technique used.

The paper is organized as follows. Following the introduction

in Section I, the adaptive entropy loading technique is discussed

in detail in Section II. Section III focuses on the device aspects

of this work (DML and AMUX) with particular emphasis on

the DML design and characteristics. At last, the experimental

demonstration is presented in Section IV, following a conclusion

in Section V.

II. ADAPTIVE ENTROPY LOADING

In order to achieve single-channel IM/DD operations with

>300 Gbps in an effective and power-efficient manner, optical

transceivers with large analog bandwidths of >65 GHz are

required [3], [10], [16]. When it comes to such wide-bandwidth

optical transceivers, a flat end-to-end system frequency response

is rarely achieved without the support of some advanced digi-

tal signal processing (DSP) technique. Furthermore and more

importantly, even if a flat response is achieved through the use

of, e.g., nonlinear equalization and/or pulse-shaping, the overall

SNR will most probably still vary over different frequencies,

posing limitations in single-carrier modulation formats such as

PAM-4. An alternative solution which alleviates the limitations

of single-carrier modulations, is the use of multi-carrier mod-

ulation formats such as, e.g., DMT in which quadrature-and-

amplitude modulated (QAM) symbols with different modula-

tion orders are assigned to different frequency subcarriers [13],

[14]. In addition, non-quantized bit resolutions, i.e., in the form

of probabilistically-shaped (PS) modulations, can address the

SNR in a more efficient way and achieve capacities closer to

the Shannon limit [15]. The modulation scheme in which a

multi-carrier modulation relies on PS-QAMs is called “Entropy

Loading” (EL) [10]–[12]. In such a scheme, different subcarriers

or sub-bands are modulated by PS-QAMs with information

entropies (expressed in [bits/symbol]) that are based on their

SNR profile as shown in Fig. 1 for the DMT case.

Fig. 1. EL-DMT: entropy loading in DMT modulation.

Considering such approaches, a question arises on how to

assign PS-QAMs’ entropies in different sub-carriers/bands in

the most efficient, simple, and accurate way in order to support

the highest throughput or the lowest error performance possible.

Previous works treated this entropy assignment problem on

either a manual (e.g., human-in-the-loop) fashion [10] or by

utilizing pre-calculated 3D look-up tables [12]. However, the

former approach is difficult to be scaled up for a large number

of sub-carriers/bands (typically hundreds for, e.g., DMT), while

the latter can achieve only limited entropy resolutions (defined

by the matrix size) while requiring extensive simulations in order

to build the 3D matrices in the first place.

An alternative solution is the use of an adaptive/learning

algorithm which attributes the entropy profiles based on a learn-

ing rule that ensures either maximization of the throughput or

minimization of the error performance for a given data rate.

This “machine-learning” approach can achieve arbitrary small

information entropy resolutions and can be extended to a large

number of subcarriers based on a single unified performance

metric such as the “effective” normalized generalized mutual

information (NGMI) [10], [17]. A possible drawback is that a

number of communication loops are then required between the

transmitter (Tx) and the receiver (Rx) for achieving adaptation

convergence. However, the number of iterations can be mini-

mized through an appropriate choice for the learning algorithm

and initial conditions. In addition, after the initial adaptation

is established, the system can then operate without any further

communication between Tx and Rx, with no additional latency

added. In this work, due to its rapid-convergence properties,

we rely on a vectorial Newton’s method to solve the entropy

assignment problem.

Following a DMT notation, the modulator assigns S subcar-

riers with PS-QAM modulations based on modulation orders

Mi and entropies H (Xi) = −
∑

x∈Xi
Pi(x)log2Pi(x). Here

i = 1, 2, . . . , S is the subcarrier index, Xi is the set of all

possible symbols for the i-th subcarrier, and Pi(·) defines prob-

ability distributions. The entropies are given in [bits/symbol].

We consider PS-QAM based on Maxwell-Boltzmann (MB)

statistics as follows:

Pi (x) ≡ PXi
(x, vi) =

e−vi|x|
2

∑

x′∈Xi
e−vi|x′|2

(1)



DIAMANTOPOULOS et al.: >100-GHZ BANDWIDTH DIRECTLY-MODULATED LASERS AND ADAPTIVE ENTROPY LOADING 773

where vi is the MB constant that defines the PS profile in each

subcarrier. In such a system the net data rate after removing any

FEC coding is given by [8], [10], [15]:

NetRate (v) = rmod

∑

i

Rs,i [H (Xi)

− (1− rFEC) log2 (Mi)] (2)

wherev defines a vector with all vi values,Rs,i is the symbol rate

per subcarrier, rmod is a code rate defining any overhead required

for synchronization, equalization, and modulation, and rFEC

is the FEC code rate. Note that, here, rFEC is based on non-

shaped parity bits while rmod is applicable on shaped modulated

symbols. As discussed, the most common performance metric

in such multi-carrier PS modulations is the “effective” NGMI,

which can be defined as follows [10], [17]:

NGMI (v) ≈ 1−
∑

i

[

H(Xi)

−
1

N

∑

n

log2
qi (yn,i|xn,i)

∑

x′∈Xi
qi (yn,i|x′)Pi (x′)

]/

∑

i

mi (3)

where mi = log2 (Mi), n = 1, 2, . . . , N is the sample in-

stance (for N total samples), and qi(yi|xi) is the conditional

probability which defines an auxiliary channel with input signal

xi and output signal yi. Please note that, here, the expression

for the achievable rate [15], [18] was used for mathematical

convenience. However, the adaptive method presented in this

section can be equally applied to any (N)GMI definition (e.g.,

based on bit-wise log-likehood ratios) [17], [18].

Here the additive white Gaussian noise (AWGN) channel is

considered as follows:

qi (yi|xi) ≡ PYi|Xi
(yi|xi, σi)

= exp

(

−
|yi − xi|

2

2σi
2

)/

√

2πσi
2 (4)

with σi
2 being the noise variance per subcarrier.

For the adaptive EL algorithm we first need to define the

derivatives of the MB distributions, entropies, net rates, and

NGMIs in respect to vi or v as follows:

∂viPi (x) = Pi (x)

[

∑

x′∈Xi

Pi (x
′) |x′|

2
− |x|2

]

(5)

∂viH (Xi) = −
∑

x∈Xi

∂viPi (x)

[

log2Pi (x) +
1

ln (2)

]

(6)

∂vNetRate (v) = rmod

∑

i

Rs,i∂viH (Xi) , (7)

and

∂vNGMI (v) ≈ −
∑

i

[∂viH (Xi)

−
1

N ln (2)

N
∑

n = 1

∑

x∈Xi
qi (yn,i|x) ∂viPi (x)

∑

x∈Xi
qi (yn,i|x)Pi (x)

]/

∑

i

mi

(8)

TABLE II
DMT AND FEC PARAMETERS USED IN SIMULATIONS AND EXPERIMENTS

Similar expressions for∂vNGMI(v) can be derived for other

(N)GMI definitions [17], [18].

Finally, based on Eqs. (1)–(8) we can assign the entropies in

an adaptive manner based on a vectorial Newton’s method:

- for maximizing the net rate based on an NGMI target

(NGMI∗):

vj+1 = vj

+ [NGMI∗−NGMI (vj)] /∂vNGMI (v) |v =vj

(9)

- for maximizing NGMI (i.e., minimizing errors) based on a

target net rate (NetRate∗):

vj+1 = vj + [NetRate∗

− NetRate (vj)] /∂vNetRate (v) |v=vj

(10)

Here j defines the iteration index. Based on the above rules,

the iterative learning algorithm can then be performed based on

the following algorithm: (i) define modulation orders Mi and

initial MB coefficient vector v, e.g., v = 0, (ii) estimate the

effective NGMI and NetRate after Tx-Rx communication,

(iii) estimate MB coefficient vector v based on Eq. (9) or Eq.

(10), (iv) repeat (ii)-(iii) until performance target is reached. Step

(i) can be based on rough empirical/experimental rules or easy-

to-obtain (e.g., published) theoretical results, thus, avoiding any

need for generating computationally costly 3D look-up tables.

In the rest of the paper we focus on maximizing the net

rate for a given effective NGMI target, i.e., using Eq. (9). The

maximization of NGMI for a given net rate (i.e., Eq. (10)) is,

therefore, left for future works.

Fig. 2(a) plots simulated results on the achieved net rate as

a function of SNR based on EL-DMT with a sampling rate

of 160 GHz and 512 subcarriers over a channel composed of

an 80 GHz resistor-capacitor (R-C) filter and AWGN. These

theoretical results match very closely the experimental results

discussed in Section IV. The detailed DMT parameters are listed

in Table II and were the same as those used in the experiments.

Finally, Fig. 2(b) depicts the convergence of the adaptive

algorithm using Eq. (9) and SNR = 16.46 dB. In this case a

steady-state net rate of 400.0 Gbps can be achieved using less

than 6 iterations. Note that iteration #1 actually defines step (i) in

the algorithm and, thus, the actual required number of iterations

for the Newton’s algorithm to converge is less than 5. All points

in Fig. 2(a) were calculated in a similar manner.
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Fig. 2. Simulation results with an 80 GHz R-C filter + AWGN channel for
EL-DMT with 160 GHz sampling rate and 512 subcarriers.

III. DEVICE CHARACTERISTICS

A. Membrane III-V-on-SiC Passive-Feedback Laser

The DML was fabricated using our membrane-III-V-on-SiC

technology [6] and had a similar cavity design to the one in [5].

As a first step, a thin III-V membrane composed of InGaAlAs

multi-quantum wells (MQWs) was directly-bonded to a SiC

substrate through a SiO2 buffer layer. The total III-V thickness

was kept ∼340 nm. Such a membrane-III-V-on-SiC structure

enables a high optical confinement, while the high thermal

conductivity of the SiC substrate ensures a high differential

gain at high current densities. The combination of these two

features allow for record-high relaxation oscillation frequencies

of ∼40 GHz and intrinsic 3-dB bandwidths of ∼60 GHz [5].

The cavity was based on the distributed reflector design

shown in Fig. 3(a). In such a design, single-mode operation is

provided by using a (passive) distributed Bragg reflector (DBR)

section in order to filter one of the two main modes that appear

in the transmittance spectrum of a non-phase-shifted (active)

distributed feedback (DFB) section. Here, the DFB and DBR

sections were 50-µm and 60-µm long, respectively, similar to

Fig. 3. Membrane DML-on-SiC.

[5]. In order to enhance the 3-dB bandwidth beyond the intrinsic

value, a passive 135-µm long InP waveguide (WG) was also

integrated in the side opposite to the DBR. That allowed for the

generation of a PPR through a passive-feedback mechanism.

Fig. 3(b) and Fig. 3(c) depict the fiber-coupled output power

and dynamic electro-optic (EO) response characteristics, respec-

tively, at a stage-controlled room temperature of 25 °C. The

kink in Fig. 3(b) at ∼17 mA is attributed to mode hopping. At
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Fig. 4. Digitally pre-processed AMUX operation [7–9]. Inset: AMUX
chip [9].

a bias current of 42 mA the laser exhibits a 3-dB bandwidth of

∼104.5 GHz and a fiber-coupled power of ∼0.6 dBm. Also, as

shown in Fig. 3(d), at this bias current the lasing wavelength was

∼1295.48 nm with a side-mode suppression ratio of >40 dB,

and a PPR side-mode spaced at ∼89 GHz. This side-mode

spacing corresponds to the PPR peak appearing in the EO

response. Finally, at these conditions the operating power was

42 mA × 4.233 V ≈ 0.178 W.

This time, the output power was <1 dBm which could be a

limiting factor for practical short-reach applications. The rel-

atively low output power was mainly because this fabrication

run was among the first of this new technology and the slope

efficiency was not yet optimized. In our more mature mem-

brane InP on Si technology we can achieve slope efficiencies

of ∼0.28 W/A [20]. Hence, by optimizing our membrane InP

on SiC technology to a similar degree, we expect that higher

output powers of ∼10 dBm can be reached in the near future.

Moreover, the use of spot-size converters for efficient, low-loss

fiber coupling is a complementary solution to the above [21].

B. Digitally Pre-processed Analog Multiplexer

The detailed operation principle of the AMUX and its dig-

ital pre-processing are described in [7]–[9] and Fig. 4. With

them, we can generate arbitrary signals with bandwidths up

to 2B using two digital-to-analog converters (DACs) with an

analog bandwidth of B. First, the DSP generates a digital signal

corresponding to the wideband target signal. Then, the digital

preprocessor weaves it into two sub-signals with a corresponding

analog bandwidth of B. The digital sub-signals are converted to

the analog sub-signals by the DACs. The AMUX makes these

sub-signals pass through alternately at a clock frequency of

fclk =B and outputs a superposition of the baseband components

and images of the sub-signals. Based on the relative phases and

amplitudes of the baseband signals and images, we can tailor

the digital weaving process so that we obtain the target signal as

the AMUX’s output.

The AMUX was designed and fabricated by using a

0.25-µm-emitter-width InP Double Heterojunction Bipolar

Transistor (DHBT) technology [9]. The cutoff and maximum

Fig. 5. Experimental evaluation.

oscillation frequencies of the HBTs are up to 460 and 480 GHz,

respectively, and their DC current gain is larger than 40. As

shown in the inset of Fig. 4, the AMUX chip’s footprint is

2 × 2 mm2. The analog 3-dB bandwidth of the AMUX is larger

than 100 GHz.

IV. EXPERIMENTAL DEMONSTRATION

A. Experimental Setup

The experimental setup is shown in Fig. 5(a). At the Tx

side, two ∼40-GHz-bandwidth digitally-preprocessed base-

band signals and a clock signal with a frequency of 41-GHz

were generated by an arbitrary waveform generator (AWG) at

∼92 GSa/s, in order to drive the AMUX. Prior to the AMUX,

a set of ∼40-GHz-bandwidth low-pass filters (LPFs) were used

to filter the baseband signals, while an electrical amplifier and

a 2x frequency multiplier were used in order to amplify and

double the frequency of the clock signal, respectively. To provide

sufficient driving voltage (Vpp) for the DML, two ∼70-GHz-

bandwidth, 11-dB-gain RF drivers were connected in series to
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amplify the AMUX output. The laser was then driven using a

∼70-GHz-bandwidth bias-tee connected to an RF probe via a

short RF cable. The laser was operating at a stage-controlled

room temperature of 25 °C and its output was aligned to a

lensed fiber pigtail which was connected to the SSMF. The

driving current was 42 mA. A detailed discussion about DML’s

characteristics is given in Section III.A.

At the Rx side, in order to detect the ∼80-GHz bandwidth

signal, an in-house uni-travelling-carrier photodiode (UTC-PD)

was used together with a praseodymium-doped fiber amplifier

(PDFA) to provide sufficient 9.1 dBm received optical power

(ROP) as in [5]. The bandwidth of the in-house UTC-PD was

> 90 GHz in the O-band, with a responsivity of ∼ 0.1 A/W. Just

before the PD, a 20 dB optical coupler (not shown in Fig. 5(a))

was used for ROP and spectrum measurements. Then, after the

PD, the signals were stored by a >100-GHz real-time digital

sampling oscilloscope (DSO) at 256-GSa/s. As discussed in

Section III.A, we expect that in the near future we will be able

to increase the DML’s output power to up to ∼10 dBm and,

therefore, omit the use of a PDFA for practical applications.

In addition, integration of the PD with a trans-impendence

amplifier or use of PDs with better receiver sensitivity can reduce

the required ROP effectively.

The offline DSP flowchart is shown in Fig. 5(b) and the

DMT parameters are listed in Table II. Standard DMT pro-

cesses were used including Hermitian-symmetric (inverse) fast

Fourier transform ((I)FFT), serial-to-parallel (S/P) and parallel-

to-serial (P/S) conversions, and addition of training symbols

(TS) and cyclic prefix (CP) [14]. The DMT sampling rate was

Rs = 160 GHz, the number of subcarriers was S = 512, and a

total CP and TS overhead of ∼1.9% was used (combined rate

rCP+TS = 0.9814). A 0.01-rolloff root-raised cosine (RRC)

filter was used for pulse shaping at the Tx with a similar matched

filter at the Rx. At the Rx DSP, the signals were first resampled

at 2Rs and then equalized by a fixed (pre-trained) linear Wiener

filter and an 11-tap 3rd-order Volterra nonlinear compensator

(VNLC) followed by a low-pass filter (LPF) to remove residual

clock components. The electrical spectrums after the DSO and

after VNLC+RRC+LPF over 2-km SSMF transmissions as

shown in Fig. 5(c) and Fig 5(d), respectively. Owing to the

nonlinear equalization and filtering a flat spectrum could be

obtained.

Regarding the EL profile, at first, fixed (non-PS) rectangu-

lar 256-QAM, 64-QAM, and 16-QAM were attributed to the

subcarriers based on their QPSK-probed SNRs (Fig. 6) and

simple empirical rules as step (i) of the algorithm described in

Section II. Subcarriers with SNR < 5 dB were not used. Then,

the entropies were optimized iteratively based on the vectorial

Newton’s method of Section II, Eq. (9) based on an “effective”

NGMI target (see Section II for details).

B. Experimental Results

The effective NGMI versus the net and pre-FEC data rates for

BTB and 2-km SSMF transmissions are summarized in Fig. 7

and Table I. In this work, the net rates were defined based on

Eq. (2) by using Rs,i = Rs/S , ∀i and rmod = rCP+TS/2 .

The division by 2 in the definition of rmod encapsulates the use

Fig. 6. Experimental results: (a) SNR, (b) Entropy Loading profile, and (c)
(N)GMI per subcarrier after 2-km SSMF transmission at an NGMI target of
0.859. In this case, the net rate was 321.24 Gbps and a total of 505 subcarriers
were used.

Fig. 7. Effective NGMI versus Net and Pre-FEC Data Rate.

of a 2x size (I)FFT, used for the Hermitian symmetry. Hence,

it is considered here as part of the modulation. The system

was re-trained for each data point by estimating the SNR and

then adapting the EL-DMT for different target NGMIs using

Eq. (9). The maximum NGMI target and FEC were based on a

concatenated FEC with an aggregate overhead (OH) of ∼21%

(total code rate, rFEC = 0.826) and an NGMI threshold of

0.857 [19]. Based on this 0.857 NGMI threshold, net 325-Gbps

and 321.24-Gbps were achieved after BTB and 2-km SSMF

transmissions, respectively. Regarding the 2-km SSMF trans-

mission, these results denote an increase of ∼34% compared

to our previous work [5]. In addition, the pre-FEC rates (after

removing the CP+TS) were 411.66 Gbps and 407.95 Gbps,

respectively.

The SNR, entropy assignment, and (N)GMI profiles per sub-

carrier of the 321.24-Gb/s EL-DMT signal after 2-km SSMF
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transmissions are shown in Fig. 6(a), Fig. 6(b), and Fig. 6(c),

respectively. Also the modulated optical spectrum after the

DML is shown in Fig. 3(d). In this case, the average SNR was

∼13.3 dB. Based on this value, the obtained net rates are very

close to the theoretical results shown in Fig. 2(a). Also, The

SNR dip around 23-GHz (148-th subcarrier) corresponds to

spurs appearing in the electrical spectrum of Fig. 5(d). Based

on previous measurements that used the same AWG but had

a different experimental setup, we believe that these spurs are

actually caused by residual clock components of the AWG, i.e.,

92/4 = 23 GHz. Even though these SNR results can appear to be

relatively low, there is a lot of room for improvement considering

that the laser’s power can be considerably increased in the future

(see Section III.A). Meanwhile the main bandwidth limitation in

our setup was coming from the RF drivers and the AWG. Future

works, therefore, will be focused on optimizing our III-V/SiC

technology to increase the laser’s fiber-coupled fiber and also

co-integrate the laser with the high-speed electronics. Then,

based on the theoretical results of Fig. 2(a), net data rates of

>400 Gbps can be expected in the future.

V. CONCLUSION

Towards low-cost and energy-efficient TbE and single-

channel >300-Gbps IM/DD systems, we have demonstrated

DML-based net 325-Gb/s at BTB and 321.24-Gb/s after

2-km SSMF transmission and pre-FEC rates >400 Gbps. The

DML transmitter was based on a PPR-enhanced, >100-GHz-

bandwidth DML fabricated by our novel membrane-III-V-on-

SiC technology. Also wide-band, entropy-loaded DMT mod-

ulation was utilized based on a novel adaptive algorithm and

via a digitally-preprocessed analog multiplexer. Our net rate

performance denotes an increase of ∼34% compared to our

previous works, and it is a significant step towards achieving

DML-based 400-Gbps/λ IM/DD inter-connections in the future.
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