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SUMMARY A single flux quantum (SFQ) logic cell library has been
developed for the 10 kA/cm2 Nb multi-layer fabrication process to ef-
ficiently design large-scale SFQ digital circuits. In the new cell li-
brary, the critical current density of Josephson junctions is increased from
2.5 kA/cm2 to 10 kA/cm2 compared to our conventional cell library, and
the McCumber-Stwart parameter of each Josephson junction is increased
to 2 in order to increase the circuit operation speed. More than 300 cells
have been designed, including fundamental logic cells and wiring cells for
passive interconnects. We have measured all cells and confirmed they sta-
bly operate with wide operating margins. On-chip high-speed test of the
toggle flip-flop (TFF) cell has been performed by measuring the input and
output voltages. The TFF cell at the input frequency of up to 400 GHz was
confirmed to operate correctly. Also, several fundamental digital circuits,
a 4-bit concurrent-flow shift register and a bit-serial adder have been de-
signed using the new cell library, and the correct operations of the circuits
have been demonstrated at high clock frequencies of more than 100 GHz.
key words: single flux quantum circuit, Josephson junction, cell library,
adder

1. Introduction

Single flux quantum (SFQ) circuits [1] are expected to play
important roles in future high-end information processing
systems because of their high-speed operation and ultra low
power consumption. A cell-based design methodology and
the digital circuit simulation [2] are very suitable for design-
ing large-scale SFQ digital circuits. We have developed an
SFQ logic cell library, called the CONNECT cell library
[3], for the Superconductivity Research Laboratory (SRL)
2.5 kA/cm2 Nb process [4]. We have demonstrated high-
speed operations of several important digital circuits using
the CONNECT cell library [5], [6]. The maximum operat-
ing frequency of the SFQ cross-bar switch was 50 GHz [6].

The operating speed of the SFQ circuit is proportional
to the square root of critical current density (JC) of Joseph-
son junctions. Recently, the SRL has developed a new
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fabrication process that has the critical current density of
10 kA/cm2 [7], [8].

In this study, we have developed a new cell library
for the SRL 10 kA/cm2 Nb multi-layer process and demon-
strated the high-speed operations of fundamental circuits de-
signed using the new cell library.

2. Cell Library for the 10 kA/cm2 Nb Multi-Layer Pro-
cess

The SRL 10 kA/cm2 Nb multi-layer process has eight
superconductive wiring layers including a ground plane.
Though 10 superconductive layers were originally available
in the SRL 10 kA/cm2 Nb multi-layer process [8], we have
adopted the 8-layer structure to shorten the fabrication pro-
cess and to improve the circuit yield.

The lowest layer is used to supply the bias currents and
is called the dc power layer (DCP). Middle four layers are
used for passive transmission line (PTL) wiring [9]. The
upper two layers are used for implementing active circuits
containing Josephson junctions. Also, a thick ground plane
prevents the active circuits from magnetic coupling to bias
currents flowing in the DCP [10].

In the new cell library, the critical current density
of Josephson junction is increased from 2.5 kA/cm2 to
10 kA/cm2 compared to our conventional process. More-
over, the McCumber-Stwart parameter (βC) of Josephson
junctions is increased to 2. Therefore, the operating speed of
cells in the new cell library becomes higher than that of the
conventional cells. Figure 1 shows the comparison of SFQ
pulses in the new and conventional cells. The SFQ pulse
in the new cell library becomes sharp and a higher speed
operation can be expected.

In the SRL 10 kA/cm2 Nb multi-layer process, the de-
sign rule is modified and we can use resistor layers under-
neath Josephson junctions as shunt resistors due to the pro-
cess improvements. Because of decrease of the Josephson
junction area decreasing and the design rule being modified,
we could reduce the unit cell size to 30 μm × 30 μm, while
it was 40 μm × 40 μm in the conventional cell library. Fig-
ure 2 shows the mask layout and an equivalent circuit of
the Josephson transmission line (JTL) cell consisting of two
Josephson junctions with the βC of 2.

The standard value of supplied bias voltage is 2.5 mV.
The bias currents are supplied to active circuits, which are
implemented using upper two layers, from the DCP via ver-
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Fig. 1 Comparison of SFQ pulses of the 10 kA/cm2 Nb advanced
process and conventional 2.5 kA/cm2 process.

Fig. 2 The mask layout (a) and the equivalent circuit (b) of the JTL cell
consisting of two Josephson junctions. The critical current of Josephson
junctions is 216 μA. Josephson junctions are resistively shunted so that the
βC becomes 2. Shunt registers are 5.2Ω. The pillar in the mask layout
corresponds to vertically stacked contacts for bias supply. Lin = 0.29 pH,
L1 = 2.27 pH, L2 = 4.53 pH, L3 = 1.98 pH and Rbias = 8.35Ω.

tically stacked contacts, called bias pillars. The bias pillars
are located at the corners of each cell. The DCP lines are lo-
cated at the periphery of each cell. Therefore the DCP lines

Fig. 3 Comparison of the simulated delay time of JTL cells of the
conventional and new cell libraries.

Fig. 4 Measured dc bias margins of fundamental logic cells of the new
cell library. The dc bias margins are normalized by the designed bias volt-
age (2.5 mV). The DFF and NDRO mean a delay flip-flop cell and a non-
destructive read out flip-flop cell respectively.

compose meshed lines in the circuit designed by using the
new cell library. Every cell is surrounded by moats penetrat-
ing eight layers to avoid the effects of trapped flux on circuit
operations. The effective moat structure for the multi-layer
Nb process is adopted on the bases of experimental results
obtained by Fujiwara et al. [11].

Figure 3 shows the dependences of simulated delay
time of JTL cells consisting of two Josephson junctions of
the new cell library and our previous cell library. As one
can see, the delay time of the new JTL cell is more than two
times faster than the previous one because of the high criti-
cal current density of Josephson junctions and the increase
in βC .

We have designed more than 300 cells, including fun-
damental logic cells and wiring cells for passive intercon-
nects. The cells for passive interconnects are composed of
strip lines and the PTLs can be overlapped with logic cir-
cuits because the logic circuits and PTLs are fabricated us-
ing different superconducting layers. Therefore, the wiring
has become much more flexible [12].

We have measured dc bias margins of all cells at low
speed. Figure 4 summarizes the measured dc bias margins
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of fundamental logic cells. All logic cells have the widths of
dc bias margins of more than 40%, and dc bias margins of
wiring cells were more than 60%.These operating margins
are as wide as margins of our conventional cell library [3].

3. High-Speed Test of Fundamental Circuits

We have also performed an on-chip high-speed test of a tog-
gle flip-flop (TFF) cell by measuring input and output volt-
ages [13]. Figure 5 shows high-speed test results of the TFF
cell. In the correct operation region, the measured output
voltage is exactly equal to twice the input voltage because
the output frequency of the TFF is half the input signal fre-
quency. From the measurement results, the maximum op-
erating frequency of the TFF cells reaches 400 GHz. This
maximum frequency agrees well with the circuit simulation
assuming the critical current density of 10 kA/cm2 and βC of
2.

We have designed and tested several fundamental SFQ
digital circuits, a 4-bit concurrent-flow shift register and a
bit serial adder [14]. These circuits have been designed on
the basis of a digital simulation by a hardware description
language, Verilog-HDL. When we design digital circuits us-
ing the digital simulation, only the tables of timing param-
eters of cells, extracted by an analog simulation, were used
to design the circuits. The used timing information was the
propagation delay for every internal state of the cells, the
setup time, and the hold time.

The 4-bit shift register was composed of JTL cells,
splitter cells, and delay flip-flop (DFF) cells. Figure 6 shows
the dependence of the measured dc bias margin on the clock

Fig. 5 High-speed test result of the toggle flip-flop (TFF) cell. Vsin cor-
responds to current supplied to Josephson junction located at the input port
of the TFF cell. Vin and Vout1 are the average input voltage and output
voltage, respectively. The scale of the supplied sinusoidal voltage (Vsin)
is 2 V/div. and the sinusoidal current is supplied to a Josephson junction
located at the input port via a resister of 10 kΩ. The scale of the input
voltage (Vin) is 200 μV/div., which corresponds to 96.7 GHz/div. The scale
of the output voltage (Vout) is 100 μV/div. From these measurements, the
maximum operating frequency of the TFF cell is 400 GHz. In the cor-
rect operation region, the input voltage is equal to twice the output voltage
(Vout1).

frequency. The measured maximum operating frequency of
the 4-bit concurrent-flow shift register was 120 GHz.

The bit serial adder was composed of two AND cells,
two EXOR cells and various wiring cells. Figure 7 shows
the microphotograph of the test circuit of the bit-serial adder.
Several circuits were implemented to perform the on-chip
high-speed test [15]. The number of Josephson junctions of
the test circuits was 582. The Power consumption of the
test circuits was 188 μW. Figure 8 shows the dependence of
the measured dc bias margin of the bit-serial adder. The
measured maximum operation frequency was 89 GHz. The
dependence of measured dc bias margin agrees well with
the simulated results. Moreover, the feedback loop of the
carry signal restricts the maximum operation frequency in
the simulation. The dependence of the measured dc bias
margin indicated that the feedback loop restricted the oper-
ation frequency, which is in good agreement with simulated
results. These results indicate that the simulated results us-
ing the digital simulation for the new cell library are very
valid.

Fig. 6 Dependence of dc bias margin of the 4-bit concurrent-flow shift
register. The solid line shows simulated result and the dashed line cor-
responds to measured results. The maximum operating frequency is
120 GHz.

Fig. 7 Microphotograph of the tested bit-serial adder including some pe-
ripheral circuit for the on-chip high-speed test. The number of Josephson
junctions of the test circuit is 582.
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Fig. 8 Dependences of measured and simulated dc bias margins of the
bit-serial adder on the clock frequency. The solid line corresponds to sim-
ulated result. The dashed line corresponds to the measured result.

4. Conclusion

We have developed the SFQ cell library for the SRL
10 kA/cm2 Nb multi-layer process. In the new cell library
the critical current density and McCumber-Stwart parame-
ter are increased to enhance the operating frequency. The
integration level is improved compared to our previous cell
library due to the reduced unit cell size. We have designed
and tested more than 300 cells and confirmed the stable op-
eration of all cells. We have performed a high-speed test
of the toggle flip-flop (TFF) cell and confirmed the cor-
rect operation at the input frequency of up to 400 GHz. We
have demonstrated the high-speed operation of several fun-
damental circuits. We have experimentally confirmed that
our shift resister circuit can operate correctly with clock fre-
quencies of more than 100 GHz. Furthermore, we have also
demonstrated the validity of digital circuit simulation for the
new cell library.
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