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Abstract

Vitamin D has many physiological functions including upregulation of intestinal calcium and 
phosphate absorption, mobilization of bone resorption, renal reabsorption of calcium as 
well as actions on a variety of pleiotropic functions. It is believed that many of the hormonal 
effects of vitamin D involve a 1,25-dihydroxyvitamin D3-vitamin D receptor-mediated 
transcriptional mechanism involving binding to the cellular chromatin and regulating 
hundreds of genes in many tissues. This comprehensive historical review provides a unique 
perspective of the many steps of the discovery of vitamin D and its deficiency disease, rickets, 
stretching from 1650 until the present. The overview is divided into four distinct historical 
phases which cover the major developments in the field and in the process highlighting the: 
(a) first recognition of rickets or vitamin D deficiency; (b) discovery of the nutritional factor, 
vitamin D and its chemical structure; (c) elucidation of vitamin D metabolites including the 
hormonal form, 1,25-dihydroxyvitamin D3; (d) delineation of the vitamin D cellular machinery, 
functions and vitamin D-related diseases which focused on understanding the mechanism of 
action of vitamin D in its many target cells.

Introduction

The history of vitamin D is a rich and storied subject and 
is now over 350 years old. It began in the early 1600s with 
the first descriptions of the human deficiency disease: 
rickets in children and osteomalacia in adults. Of course, 
there were no precise medical details that distinguished 
it from other bone diseases, but treatises describing the 
symptoms and lithographs from that time showing bone 
deformities resembling rickets leave little doubt that it was 
vitamin D deficiency. It took another 250 years to define 
the cause of vitamin D deficiency in the 1900–1920 period 
when physicians and biochemists elucidated the role of 
sunlight and identified the chemical structure of the two 
main forms of the vitamin D molecule, vitamin D2 and  
vitamin D3.

Another 50 years elapsed before the metabolism 
of vitamin D was first described in 1967 and the active 
form of vitamin D, namely 1,25-dihydroxyvitamin D  

(1,25-(OH)2D), was discovered. The period of time since 
has witnessed the exciting realization that vitamin D  
has its own set of dedicated specialized machinery 
consisting of transport proteins, metabolic enzymes 
and vitamin D receptor (VDR) to mediate the actions 
of vitamin D, not only in bone but also in many other 
tissues around the body where it has a myriad of different  
physiological effects.

Before we get into the history of vitamin D, let us first 
remind the reader of the general aspects of its nomenclature, 
origins and principal functions. Vitamin D is a steroidal 
substance required by all vertebrates including humans to 
maintain blood calcium and phosphate within a narrow 
normal range and thereby support a healthy skeleton, 
muscle contraction, immune function and optimal 
cellular functions in many locations around the body (1). 
The name vitamin D is a term coined by nutritionists, and 
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is not a chemical term, which is defined as ‘a substance 
with anti-rachitic properties that will cure rickets’. In human 
biology, vitamin D usually refers to two substances: 
vitamin D3 (usually known as cholecalciferol) of animal 
origin and vitamin D2 (referred to as ergocalciferol) of 
plant or fungal origin. These two forms have roughly equal 
potencies, similar metabolic patterns and identical effects 
in the body.

Because of the four phases of vitamin D history, this 
review is divided into four sections each summarizing one 
particular time period:

1. 1650–1890: history of vitamin D deficiency (rickets)
2. 1890–1930: history of the discovery of vitamin D and 

its structural elucidation
3. 1930–1975: history of the discovery of vitamin D 

metabolites including 1,25-(OH)2D3

4. 1975–present: history of the discovery of the  
vitamin D cellular machinery, functions and  
vitamin D-related human diseases.

Since the different facets of the history of vitamin D 
represent interesting topics and span many centuries, they 
have been reviewed by many previous historians, including 
the current author, and interested readers are invited to 
further access these because they focus on different aspects 
of the overall story (2, 3, 4, 5, 6, 7, 8).

1650–1890: history of vitamin D 
deficiency (rickets)

There is no doubt that rickets was prevalent in Europe 
long before it was recognized as a specific disease in 
the 15th century, but the earliest documentation of 
the word ‘rickets’ was in a domestic receipt book of an 
English family in 1632 and the earliest printed record of 
rickets as a disease causing death in the London Bill of 
Mortality in 1634 (reviewed by (2, 3, 4)). The term rickets 
is thought to have its origins in the verb in the Dorset 
dialect to ‘rucket,’ which means to breathe with difficulty. 
However, some claim the term rickets is derived from the 
Anglo-Saxon word ‘wrikken,’ meaning to twist. Rickets 
and osteomalacia were first clearly described by Daniel 
Whistler in the Netherlands (1645) as a condition in 
which the skeleton was poorly mineralized and deformed 
(9). Francis Glisson (1650) provided the first documented 
records with his book entitled De Rachitide first published 
in Latin in 1650 and then translated into English in 1671 
(10). It features a lithograph of children with bowing of 
the legs and skeletal deformities which are the hallmarks 

of vitamin D deficiency. One of those Glisson lithographs 
was reproduced as a frontispiece in a landmark treatise on 
Rickets Including Osteomalacia and Tetany by AF Hess in 1929 
(11). It is reproduced here as Fig. 1.

A more recent definition of vitamin D deficiency has 
grown to include defective chondrocyte differentiation 
and lack of mineralization of the growth plate, but the 
common feature of vitamin D deficiency is insufficiently 
mineralized or calcified bone matrix (1, 12, 13). Rickets 
is characterized by a deformed and misshaped skeleton, 
particularly bending and bowing of the long bones and 
enlargement of the epiphyses of the joints of the rib cage, 

Figure 1
Lithograph from Glisson’s De Rachitide (1671) (10) also depicted as the 
frontispiece of Hess AF’s book (11) Rickets Including Osteomalacia and 
Tetany. Reproduced from the US National Library digital collection. Credit: 
Rickets, including osteomalacia and tetany / by Alfred F Hess.
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arms, legs and neck. Victims have painful movements of 
the rib cage and difficulty breathing. In China, medical 
texts refer to deformities of the rib cage in severe rickets 
as ‘chicken breast’ (5). Severe rickets is often accompanied 
by pneumonia. The loss of the important role of vitamin 
D in strengthening the immune system compounds 
this problem. Though rarely is rickets life-threatening, it 
certainly lowers the quality of life for the afflicted individual 
and leads to secondary problems. One of these secondary 
effects of rickets occurs in young women who had vitamin 
D deficiency in childhood causing deformities of the pelvis 
which result in difficulties in childbirth (14). Shorter (14) 
speculates that rickets in early life must have resulted in 
numerous deaths of women during their first delivery.

Vitamin D deficiency is partly the result of inadequate 
skin synthesis of vitamin D3 from 7-dehydrocholesterol 
compounded by a low dietary intake of vitamin D2 from 
plant or fungal sources or vitamin D3 from animal products. 
The advent of the Industrial Revolution in Western Europe 
heralded in massive air pollution in the form of smoke from 
mills and burning of fossil fuels. This dramatically reduced 
the amount of UV light reaching the ground. Since the 
workers needed for these new industrial jobs were required 
to move from their rural locations into dingy, poorly-
lit cities, their exposure to UV light diminished and skin 
synthesis of vitamin D was reduced. Rickets resulted and 
was associated with lack of exposure to sufficient sunlight. 
Thus, the 18th and 19th centuries saw a higher increase in 
rickets in the industrialized cities of northern Europe. The 
Dickensian character Tiny Tim, of the novel A Christmas 
Carol, clearly represents a child with a deformed skeleton 
who must have been a common sight in the dark cities of 
the late 19th century (7). Rickets was particularly prevalent 
in the industrialized Britain of the 16th–20th centuries, 
and thus, it is no surprise that it was referred to in old texts 
as ‘the English disease’ (7, 15).

Despite the fact that rickets seemed to be associated 
with lack of exposure to sunlight, by the late 1700s, some, 
including Percival (16) in the UK, were advocating the 
use of cod liver oil for the treatment of rickets suggesting 
a nutritional aspect to vitamin D. In contrast, in the early 
1800s, Sniadecki (17) in Poland was documenting the 
differential incidence in city-dwellers and rural-dwellers 
suggesting some environmental factor was involved. He 
speculated that sunlight or fresh air might be involved in 
the etiology of the disease. By the end of the 19th century, 
a rigorous debate roared on whether rickets was caused by 
the lack of some dietary substance or an environmental 
factor and how could these two points of view  
be reconciled.

1890–1930: history of the discovery of  
vitamin D and its structural elucidation

By the 1890s, some researchers such as Owen (18) and Palm 
(19), who clearly supported the environmental theory, 
produced evidence that there were big geographical 
differences in the incidence of rickets in different parts of 
the UK and northern and southern China. Palm, a medical 
missionary, went on to suggest that exposure of children to 
sunlight would cure rickets (19). Subsequently, researchers 
in Europe and the United States namely Buchholtz (1904), 
Raczynski (1913), Huldshinsky (1919), and later Chick (1922) 
and Hess & Weinstock (1924) performed experiments in 
which laboratory animals and children with rickets could 
be cured with sunlight or light from mercury arc lamps (7, 
20, 21, 22, 23, 24). This clearly demonstrated that lack of 
exposure to UV light was one cause of rickets.

But the proponents of the theory that a dietary factor 
could also be involved continued with their experiments 
too. The early 20th century was a momentous period in 
nutritional research in which nutritionists showed that a 
diet of highly purified carbohydrates, protein, fat and salt 
is unable to fully support growth and life of experimental 
animals (25). By adding various ‘trace factors’, researchers 
were able to restore growth and a full range of physiological 
actions. The first of these trace factors was thiamin 
discovered by Funk (26) which cured neuritis in what Funk 
termed the ‘vital amine or vitamin theory.’ Thiamin was later 
renamed vitamin B1, but it was one of a number of vitamin 
substances that are defined as ‘trace compounds which are 
derived from the diet and are required in small amounts per day 
and perform an essential role critical to life.’ Vitamin D was 
identified as one of these substances playing a critical role 
in skeletal growth and calcium and phosphate homeostasis. 
However, strictly speaking, vitamin D has been misnamed 
since it can also be derived from exposure to UV light and is 
not required to be in the diet. In practise and for a variety of 
social and religious reasons, many populations around the 
world do not receive adequate UV light, especially during 
the winter months, so that a dietary intake is essential.

The discovery of the nutritional factor, later termed 
vitamin D by McCollum (27), came largely as the result of 
the work of a number of researchers: Mellanby, McCollum, 
Steenbock and Hart working independently. Sir Edward 
Mellanby (28) in the UK reasoned that rickets might be 
due to a dietary deficiency and managed to produce beagle 
dogs with severe rickets by feeding them oatmeal and then 
cured their rickets with cod liver oil. Since cod liver oil is a 
mixture of lipids and a rich source of vitamin A, it was not 
clear what the active ingredient might be. McCollum (29), 
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working first at the U Wisconsin and then Johns-Hopkins, 
heated and bubbled oxygen through the cod liver oil to 
destroy the vitamin A and found that the product still 
cured rickets. Building on the new vitamin nomenclature, 
he termed the new substance vitamin D. But how was the 
field to reconcile the apparently unconnected findings 
that UV light and a nutritional substance termed vitamin 
D could both cure rickets? Harry Steenbock also working 
at the U Wisconsin-Madison performed the definitive 
experiment. Steenbock & Black experimented with the 
diets of goats and found that sunlight or UV irradiation of 
the animals or their diets resulted in rickets being cured in 
the goats (30). Steenbock traced the bioactive substance in 
irradiated food to the non-saponifiable fraction of lipids 
in the diet and showed that it cured rickets (31). Dietary 
vitamin D was born.

Subsequently, Steenbock was able to show that 
irradiated yeast contained significant amounts of vitamin 
D, later shown to be vitamin D2 and that the yeast could 
be irradiated and added to milk which formed the basis 
of the first food fortification with vitamin D (5). Though 
Steenbock and the University of Wisconsin filed a patent 
for milk fortification with vitamin D, the proceeds from 
this discovery were used to establish the Wisconsin 
Alumni Research Foundation (WARF) which was one 
of the prototypical organizations intended to allow 
universities to plough the benefits of their research into 
future research. WARF funded the research of a number 
of scientists inside and outside of the vitamin D field, 
included several Nobel laureates, with the proceeds of 
Steenbock’s patent. Furthermore, vitamin D fortification 
of a variety of foodstuffs (including milk, margarine, 
bread and even beer) has become a major nutritional tool  
in the fight to prevent rickets and osteomalacia around the 
world (5).

In the late 1920s, Windaus and colleagues (32) isolated 
the key anti-rachitic substance from a mixture of irradiated 
plant sterols and named it vitamin D1, although they did 
not identify its structure. Later, vitamin D1 was shown 
to be a mixture of vitamin D2 and tachysterol. A British 
group headed by Askew (33) successfully identified and 
determined the structure of the anti-rachitic, plant-
derived sterol as vitamin D2 or ergocalciferol. Windaus’s 
group confirmed the structure of vitamin D2 (34) and also 
isolated and identified the animal-derived, anti-rachitic 
vitamin D3 or cholecalciferol and its skin precursor, 
7-dehydrocholesterol (35). For his discovery of the 
structures of vitamin D3, 7-dehydrocholesterol and several 
other sterols, Adolf Windaus was awarded the 1928 Nobel 
Prize for Chemistry (Fig. 2).

1930–1975: history of the discovery of  
vitamin D metabolites including 1,25-(OH)2D3

Chemically synthesized vitamin D2 and vitamin D3 have 
been available since the 1930s and paved the way for the 
study of their biological functions and metabolism. The 
physiological roles of vitamin D are primarily its roles in 
calcium and phosphate homeostasis (1) and include:

(1) stimulation of intestinal calcium and phosphate 
absorption;

(2) mobilization of calcium from bone;
(3) renal reabsorption of calcium.

All three of these functions serve to raise blood calcium 
and phosphate and ensure that these ions are available to 
ensure health and prevent rickets. Elucidating the details 
of these physiological functions became the main foci 
during the 1930–1960 time period, and research revealed 
that vitamin D was intimately connected to the roles of 
other calcium and phosphate-related hormones including 
parathyroid hormone (PTH) and calcitonin. Details of 
these connections are beyond the scope of this chapter 
and are described in reviews (1) and in other articles in this 
special series.

In the 1960s, there was considerable debate over 
whether the functions of vitamin D were carried out by 
vitamin D itself or its possible metabolites. Consequently, 
intense effort was put into studying the metabolism of 
vitamin D by using chemically synthesized radioactive 
versions of vitamin D2 and vitamin D3. The pioneer in 
this area was Egon Kodicek at the Dunn Nutritional 
Laboratories, U Cambridge UK. After 10 years of work, 
Kodicek (36) concluded that vitamin D was active without 

Figure 2
Structures of vitamin D2 and D3. The two versions of vitamin D differ only 
in their side chains vitamin D2 possessing an additional C-22-23 double 
bond and a C-24 methyl group. The modifications make little significant 
difference in their metabolism or biological actions.
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being metabolized. In retrospect, the radioactive vitamin 
D that his group were using was insufficiently labeled to 
detect its metabolites. However, Hector DeLuca, again at 
the U Wisconsin-Madison, and the final graduate student 
of Harry Steenbock, synthesized radioactive vitamin D3 
with much higher specific activity (37) and was able to 
demonstrate metabolism to more polar metabolites, the 
principal one being 25-hydroxyvitamin D3 (25-OH-D3) (38) 
made in the liver and the first identified natural vitamin D 
metabolite.

25-OH-D3 proved to be more potent biologically 
than vitamin D3 and was present in the bloodstream at a 

higher concentration (38). We now identify 25-OH-D3 
as the principal circulating form of vitamin D. But that 
is not the extent of vitamin D metabolism. Several other 
groups then entered or re-entered the picture, including 
Dr Kodicek’s, as well as that of one of Dr DeLuca’s former 
graduate students Dr Anthony Norman. Among the other 
polar products of vitamin D3 was a metabolite even more 
potent than 25-OH-D3, namely 1α,25-dihydroxyvitamin 
D3 (1,25-(OH)2D3) which is now universally accepted as the 
hormonal form of vitamin D3. Several groups including 
Dr Kodicek’s, (39) Dr Norman’s (40) and Dr DeLuca’s (41) 
were credited with playing a role in the discovery and/or 

Table 1 History of the discovery of the major metabolites of vitamins D2 and D3.

Metabolite Tissue source Biosynthetic enzyme Biological role Discovery 

Vitamin D3 metabolites
 25-OH-D3 Liver 25-Hydroxylase (CYP2R1) Main circulating metabolite Blunt et al. 1968 (38)
 1,25-(OH)2D3 Kidney (major)

Extra-renal sites
1α-Hydroxylase (CYP27B1) Active hormonal form Lawson et al. 1969 (39)

Myrtle et al. 1970 (40)
Holick et al. 1971 (41)

 24,25-(OH)2D3 Kidney (major) 
Extra-renal sites

24-Hydroxylase (CYP24A1) Principal catabolite Suda et al. 1970a (48)
Holick et al. 1972 (49)

 25,26-(OH)2D3 Unknown 26-Hydroxylase (?) Catabolite Suda et al. 1970b (50)
 25-OH-D3-26,23-lactone Kidney (major)

Extra-renal sites
24-Hydroxylase (CYP24A1) Presumed catabolite Wichmann et al. 1979 (51)

 1,24,25-(OH)3D3 Kidney (major)
Extra-renal sites

24-Hydroxylase (CYP24A1) Unknown 
possible catabolite

Holick et al. 1974 (52)

 Calcitroic acid Kidney (major)
Extra-renal sites

24-Hydroxylase (CYP24A1) Excretory form Esvelt et al. 1981 (53)

 Calcioic acid Kidney (major) 24-Hydroxylase (CYP24A1) Excretory form Kaufmann et al. 2019 (76)
 4α,25-(OH)2D3
 4β,25-(OH)2D3 

Liver General cytochrome P450 
(CYP3A4) 

Excretory form Wang et al. 2013 (77)

Vitamin D2 metabolites
 25-OH-D2 Liver 25-Hydroxylase (CYP2R1) Main circulating metabolite Suda et al. 1969 (45)
 1,25-(OH)2D2 Kidney (major) 1α-Hydroxylase (CYP27B1) Active hormonal form Jones et al. 1975 (46)
 24,25-(OH)2D2 Kidney (major) 24-Hydroxylase (CYP24A1) Principal catabolite Jones et al. 1980 (47)
 1,24,25-(OH)3D2 Kidney (major) 24-Hydroxylase (CYP24A1) Presumed catabolite Reddy et al. 1986 (78)

Figure 3
Metabolism and mechanism of action of vitamin 
D3. Skin-synthesized or dietary vitamin D3 is 
converted via a two-step hydroxylation process 
into the active hormonal form 1,25-(OH)2D3. The 
hormone binds to the vitamin D receptor (VDR) 
and regulates serum calcium (sCa2+) and serum 
phosphate (sPO4) levels ensuring sufficient 
minerals for normal cellular activity around the 
body including bone. Insufficient vitamin D results 
in insufficient 1,25-(OH)2D3 and vitamin deficiency 
rickets. Circled in red are the proteins in the 
vitamin D-specific machinery that when mutated 
also result in some type of rickets. Circled in blue 
is the enzyme CYP24A1 that when mutated 
results in elevated 1,25-(OH)2D3 and 
hypercalcemia and/or kidney stones.
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in the structural identification of 1,25-(OH)2D3. Kodicek’s 
group administered a mixture of radioactive [4-14C] and 
[1-3H]vitamin D3 preparations and showed that one polar 
metabolite lost its tritium atom during metabolism that 
aided in its identification as a 1-hydroxylated compound 
(39). Furthermore, the Cambridge group also showed 
that the hormone was biologically generated in the 
kidney (39, 42). Dr Norman’s group showed that the new 
metabolite was associated with the chromatin of intestinal 
mucosal cells and had greater biological activity than 
even 25-OH-D3 (40). Holick et  al. (41) showed that the 
additional 1-hydroxyl group was in the 1α orientation 
and supported their identification of the metabolite as  
1α,25-(OH)2D3 with mass spectrometry. Chemically 
synthesized 1,25-(OH)2D3 was first produced by Semmler 
et  al. (43) and made commercially by a group headed by  
Dr Milan Uskokovic at Hoffmann-La Roche in the early 
1970s and is known clinically by the name calcitriol (44).

The identification of the principal metabolites,  
25-OH-D3 and 1,25-(OH)2D3, spawned a frenzy of research 
activity in the vitamin D area and the discovery of a 
number of other vitamin D metabolites (1). Among these 
are the principal metabolites of vitamin D2 including 
25-OH-D2 (45), 1,25-(OH)2D2 (46) and 24,25-(OH)2D2 
(47). Also identified in that mixture of metabolites arising 
from radioactive vitamin D3 were several compounds 
that are presumed to be inactive catabolites including, 
24,25-(OH)2D3, 25,26-(OH)2D3, 25-OH-D3-26,23-lactone, 
1,24,25-(OH)3D3 and calcitroic acid (48, 49, 50, 51, 52, 53). 
A summary of the main metabolites of both vitamin D3 
and vitamin D2 along with their tissue source, biosynthetic 
enzyme, details of first reporting and biological role is 
presented in Table 1 and depicted in a metabolic pathway 
diagram (Fig. 3).

1975–present: history of the discovery of the 
vitamin D cellular machinery, functions and 
vitamin D-related human diseases

The discovery of the active forms of vitamin D heralded in 
a search for

(a) the signal transduction mechanisms to explain 
how 1,25-(OH)2D3 was able to produce its various  
biological effects;

(b) identification of the enzymes responsible for the 
synthesis and catabolism of 1,25-(OH)2D3;

(c) a clear understanding of the regulation of the  
vitamin D endocrine system.Ta
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These studies began almost as soon as metabolism was 
recognized in the late 1960s when Mark Haussler, in 
AW Norman’s laboratory, demonstrated that vitamin D 
metabolites were associated with the chromatin (54). Clear 
evidence of the protein that is now termed the vitamin D 
receptor (VDR) was produced by Haussler’s lab (55). The 
VDR protein from various species was later purified and 
its gene was cloned by Haussler’s group (56, 57). Study of 
the pure protein has led to a determination of its crystal 
structure (58). Parallel to these investigations of the VDR 
have come other studies on how it works both at the 
whole-body level in calcium and phosphate homeostasis 
and other pleiotropic functions (1, 8, 59) and at the cellular 
level in a classic steroid hormone super-family like process 
through a transcriptional mechanism (60). Over the past 
30 years, Mark Haussler, Wes Pike and colleagues (61) have 
demonstrated that 1,25-(OH)2D3 works through a VDR-
mediated mechanism that involves many coactivators and 
repressors to directly interact with and regulate hundreds 
of genes around the body. Other researchers, most notably 
Anthony Norman (62), have proposed that some of the 
actions of vitamin D occur through rapid non-genomic 
signaling pathways, possibly involving a plasma membrane 
VDR but this protein has never been fully characterized 
at the molecular level. Nevertheless, there remains some 
uncertainty that all vitamin D ligands and analogs produce 
their effects through a genomic VDR mechanism (63).

The history of two other components of the  
vitamin D machinery deserves some mention.

These are vitamin D-binding globulin (64, 65) and the 
cytochromes P450-containing enzymes that metabolize 
vitamin D into its many metabolites (66). Being a fat-soluble 

vitamin, vitamin D requires a protein to transport it around 
the body and the vitamin D-binding globulin (usually 
abbreviated as DBP) performs this function. DBP was first 
identified as Gc (group-specific component) in the 1970s, 
and its properties have been reviewed extensively by the 
father figure of the field Roger Bouillon, U Leuven, Belgium 
(65). DBP has a high affinity for most of the main metabolites 
of vitamin D, most notably 25-OH-D, and because of this, 
25-OH-D is the main circulating form in the blood.

The cytochrome P450-containing enzymes (CYPs) 
responsible for vitamin D metabolism were first studied 
in the early 1970s in tissue extracts of liver and kidney 
(67, 68, 69) and then in tissue culture and given names 
based upon their hydroxylation activity: 25-hydroxylase, 
1α-hydroxylase and 24-hydroxylase. In the early 1990–
2005 period, all three enzymes were purified, cloned and 
expressed in cell culture systems, principally by Canadian 
group of St-Arnaud (70) as well as the Japanese groups 
of Kato S (71), Okuda (72) and Sakaki (73, 74) as well as 
Russell’s group at the U Texas (75). The three enzymes are 
now known as CYP2R1, CYP27B1 and CYP24A1. A review 
of the CYP field and how these enzymes operate and how 
they are regulated is provided (66). A summary of the 
history of the signal transduction protein machinery for 
vitamin D including VDR, DBP and the various CYPs is 
provided in Table 2.

No review of the recent history of vitamin D would be 
complete without an overview of how defects in vitamin 
D metabolism result in human disease. It is now evident 
that vitamin D deficiency and rickets are caused by several 
genetic and acquired errors in vitamin D metabolism 
which involve any of the major protein components of the 

Table 3 History of the main vitamin D-related genetic and acquired human diseases and animal models generated to study them.

Disease Cause Initial report Animal model equivalent Generated by

Vitamin D deficiency 
rickets

Lack of dietary 
vitamin D

Lack of skin 
synthesis of D

F Glisson 1671 (10) Beagle dog on oatmeal 
diet

Lactating goat model

Mellanby 1919 (28)
Steenbock & Black 1924 (30)

Vitamin D dependency 
rickets type 1A

Genetic defect in 
CYP27B1

Fraser et al. 1972 (82) CYP27B1 null mouse Kato 1999 (83)
Panda et al. 2001 (84)
St-Arnaud et al. 2003 (85)

Vitamin D dependency 
rickets type 1B

Genetic defect in 
CYP2R1

Cheng et al. 2004 (75) CYP2R1 null mouse Zhu et al. 2013 (86)

Vitamin D dependency 
rickets type 2

Genetic defect in 
VDR

Rosen et al. 1979 (87)
Eil et al. 1981 (88)

VDR null mouse Yoshizawa et al. 1997 (89)
Li et al. 1998 (90)

Idiopathic infantile 
hypercalcemia

Genetic defect in 
CYP24A1

Lightwood 1953 (91)
Schlingmann et al. 2011 (92)

CYP24A1 null mouse St-Arnaud et al. 2000 (93)

Chronic kidney 
disease

Loss of Kidney 
CYP27B1 enzyme 
activity

DeLuca & Avioli 1970 (94)
Brickman et al. 1974 (95)

Dog nephrectomy models Rutherford et al. 1977 (96)
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vitamin D machinery described above. These are compiled 
into Table 3 where we document the disease name, the 
component of the vitamin D machinery affected, as well 
as the publication first describing it. Besides diseases 
involving too little 1,25-(OH)2D3 and resulting in rickets, 
diseases involving too much 1,25-(OH)2D3 which cause 
hypercalcemia are also included in Table 3. Most of these 
diseases involving a shortage of 1,25-(OH)2D3 are now 
treated with vitamin D analogs which were developed 
from knowledge of the metabolism and biological actions 
of vitamin D. Currently approved and marketed vitamin 
D analogs are listed in Table 4  along with their original 
publications.

Conclusions

The history of vitamin D is indeed a rich subject which 
has already stretched over 350 years and involved the four 
phases described in this review. While the chemical entity 
vitamin D remained unknown for all but 100 of those 
years, the significant medical consequences of vitamin D  
deficiency were evident for the whole of that time. 
Many physicians, nutritionists, biochemists, chemists 
and molecular biologists have worked to elucidate our 
current knowledge of the nature of vitamin D in addition 
to its metabolism, mechanism of action and biological 
activities. That knowledge has paid dividends by providing 
new therapies for the treatment of deficiency and excess 
vitamin D action. The field of vitamin D research is 
arguably one of the highlights of modern medicine.
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